miR-1287-5p upregulation inhibits the EMT and pro-inflammatory cytokines in LPS-induced human nasal epithelial cells (HNECs)

2021 ◽  
pp. 101429
Author(s):  
Wenwei Hao ◽  
Yongping Zhu ◽  
Ying Guo ◽  
Haowei Wang
2020 ◽  
pp. 194589242094696
Author(s):  
Soyoung Kwak ◽  
Yoon Seok Choi ◽  
Hyung Gyun Na ◽  
Chang Hoon Bae ◽  
Si-Youn Song ◽  
...  

Background Glyoxal (GO), and methylglyoxal (MGO) are among the most toxic compounds emitted by electronic cigarette (E-cig) and regular tobacco cigarette smoke. Airway diseases presented mucus over production as their major pathophysiologic feature. However, the effects of GO and MGO on pro-inflammatory cytokines and mucin expression in human nasal epithelial cells, as well as the underlying signaling pathway, have not yet been studied. Objective This study is to determine whether GO and MGO induce pro-inflammatory cytokines, and MUC5AC/5B expression via mitogen-activated protein kinase (MAPK)s and nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways. Methods The effect of GO, and MGO on pro-inflammatory cytokines, mucins expression and the signalling pathway of GO and MGO were investigated using water-soluble tetrazolium salt-1, enzyme immunoassays, and immunoblot analysis with specific inhibitors and small interfering RNA. Results GO and MGO did not affect cell viability up to 2 mM in human nasal epithelial cells. GO and MGO increased production of pro-inflammatory such as interleukin (IL)-1β and IL-6) and MUC5AC/5B. Additionally, GO and MGO significantly activated extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAPK, and NF-κB. Whether ERK1/2, p38 MAPK, and NF-κB signaling pathway were involved in GO and MGO-induced production of pro-inflammatory cytokines (IL-1β and IL-6) and MUC5AC/5B, we used specific inhibitors and siRNA transfection. These significantly repressed GO- and MGO-induced expression of pro-inflammatory cytokines (IL-1β and IL-6) and MUC5AC/5B. Conclusions GO and MGO induced pro-inflammatory cytokines and MUC5AC/5B expression via ERK1/2, p38 MAPK, and NF-κB in human nasal epithelial cells. These results suggested that GO and MGO may be involved in mucus hypersecretion-related airway diseases.


2019 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
S. Kwak ◽  
Y.S. Choi ◽  
H.G. Na ◽  
C.H. Bae ◽  
S.-Y. Song ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 282
Author(s):  
Finny S. Varghese ◽  
Esther van Woudenbergh ◽  
Gijs J. Overheul ◽  
Marc J. Eleveld ◽  
Lisa Kurver ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as a new human pathogen in late 2019 and it has infected over 100 million people in less than a year. There is a clear need for effective antiviral drugs to complement current preventive measures, including vaccines. In this study, we demonstrate that berberine and obatoclax, two broad-spectrum antiviral compounds, are effective against multiple isolates of SARS-CoV-2. Berberine, a plant-derived alkaloid, inhibited SARS-CoV-2 at low micromolar concentrations and obatoclax, which was originally developed as an anti-apoptotic protein antagonist, was effective at sub-micromolar concentrations. Time-of-addition studies indicated that berberine acts on the late stage of the viral life cycle. In agreement, berberine mildly affected viral RNA synthesis, but it strongly reduced infectious viral titers, leading to an increase in the particle-to-pfu ratio. In contrast, obatoclax acted at the early stage of the infection, which is in line with its activity to neutralize the acidic environment in endosomes. We assessed infection of primary human nasal epithelial cells that were cultured on an air-liquid interface and found that SARS-CoV-2 infection induced and repressed expression of specific sets of cytokines and chemokines. Moreover, both obatoclax and berberine inhibited SARS-CoV-2 replication in these primary target cells. We propose berberine and obatoclax as potential antiviral drugs against SARS-CoV-2 that could be considered for further efficacy testing.


Sign in / Sign up

Export Citation Format

Share Document