scholarly journals A syncretic representation for image classification and face recognition

2016 ◽  
Vol 1 (2) ◽  
pp. 173-178 ◽  
Author(s):  
Zhongli Ma ◽  
Quanyong Liu ◽  
Kai Sun ◽  
Sui Zhan
2020 ◽  
Vol 2 (2) ◽  
pp. 23
Author(s):  
Lei Wang

<p>As an important research achievement in the field of brain like computing, deep convolution neural network has been widely used in many fields such as computer vision, natural language processing, information retrieval, speech recognition, semantic understanding and so on. It has set off a wave of neural network research in industry and academia and promoted the development of artificial intelligence. At present, the deep convolution neural network mainly simulates the complex hierarchical cognitive laws of the human brain by increasing the number of layers of the network, using a larger training data set, and improving the network structure or training learning algorithm of the existing neural network, so as to narrow the gap with the visual system of the human brain and enable the machine to acquire the capability of "abstract concepts". Deep convolution neural network has achieved great success in many computer vision tasks such as image classification, target detection, face recognition, pedestrian recognition, etc. Firstly, this paper reviews the development history of convolutional neural networks. Then, the working principle of the deep convolution neural network is analyzed in detail. Then, this paper mainly introduces the representative achievements of convolution neural network from the following two aspects, and shows the improvement effect of various technical methods on image classification accuracy through examples. From the aspect of adding network layers, the structures of classical convolutional neural networks such as AlexNet, ZF-Net, VGG, GoogLeNet and ResNet are discussed and analyzed. From the aspect of increasing the size of data set, the difficulties of manually adding labeled samples and the effect of using data amplification technology on improving the performance of neural network are introduced. This paper focuses on the latest research progress of convolution neural network in image classification and face recognition. Finally, the problems and challenges to be solved in future brain-like intelligence research based on deep convolution neural network are proposed.</p>


2017 ◽  
Vol 14 (1) ◽  
pp. 829-834 ◽  
Author(s):  
Chunwei Tian ◽  
Qi Zhang ◽  
Jian Zhang ◽  
Guanglu Sun ◽  
Yuan Sun

The two-dimensional principal component analysis (2D-PCA) method has been widely applied in fields of image classification, computer vision, signal processing and pattern recognition. The 2D-PCA algorithm also has a satisfactory performance in both theoretical research and real-world applications. It not only retains main information of the original face images, but also decreases the dimension of original face images. In this paper, we integrate the 2D-PCA and spare representation classification (SRC) method to distinguish face images, which has great performance in face recognition. The novel representation of original face image obtained using 2D-PCA is complementary with original face image, so that the fusion of them can obviously improve the accuracy of face recognition. This is also attributed to the fact the features obtained using 2D-PCA are usually more robust than original face image matrices. The experiments of face recognition demonstrate that the combination of original face images and new representations of the original face images is more effective than the only original images. Especially, the simultaneous use of the 2D-PCA method and sparse representation can extremely improve accuracy in image classification. In this paper, the adaptive weighted fusion scheme automatically obtains optimal weights and it has no any parameter. The proposed method is not only simple and easy to achieve, but also obtains high accuracy in face recognition.


2020 ◽  
Author(s):  
Doruk Pancaroglu

Artist, year and style classification of fine-art paintings are generally achieved using standard image classification methods, image segmentation, or more recently, convolutional neural networks (CNNs). This works aims to use newly developed face recognition methods such as FaceNet that use CNNs to cluster fine-art paintings using the extracted faces in the paintings, which are found abundantly. A dataset consisting of over 80,000 paintings from over 1000 artists is chosen, and three separate face recognition and clustering tasks are performed. The produced clusters are analyzed by the file names of the paintings and the clusters are named by their majority artist, year range, and style. The clusters are further analyzed and their performance metrics are calculated. The study shows promising results as the artist, year, and styles are clustered with an accuracy of 58.8, 63.7, and 81.3 percent, while the clusters have an average purity of 63.1, 72.4, and 85.9 percent.


2020 ◽  
Vol 39 (6) ◽  
pp. 438-439
Author(s):  
Andreas Rüger ◽  
John Brittan ◽  
Robert Avakian

Deep learning for computer vision: Image classification, object detection, and face recognition in Python, by Jason Brownlee, 2020, Machine Learning Mastery, 563 p., US$0 (eBook). Illustrated Seismic Processing: Volume 1: Imaging, by Stephen J. Hill and Andreas Rüger, ISBN 978-1-560-80361-4, 2019, Society of Exploration Geophysicists, 330 p., US$39 (members), US$72 (nonmembers). Geology: A Very Short Introduction, by Jan Zalasiewicz, ISBN 978-0-198-80445-1, 2018, Oxford University Press, 168 p., US$11.95 (print).


2010 ◽  
Vol 69 (3) ◽  
pp. 161-167 ◽  
Author(s):  
Jisien Yang ◽  
Adrian Schwaninger

Configural processing has been considered the major contributor to the face inversion effect (FIE) in face recognition. However, most researchers have only obtained the FIE with one specific ratio of configural alteration. It remains unclear whether the ratio of configural alteration itself can mediate the occurrence of the FIE. We aimed to clarify this issue by manipulating the configural information parametrically using six different ratios, ranging from 4% to 24%. Participants were asked to judge whether a pair of faces were entirely identical or different. The paired faces that were to be compared were presented either simultaneously (Experiment 1) or sequentially (Experiment 2). Both experiments revealed that the FIE was observed only when the ratio of configural alteration was in the intermediate range. These results indicate that even though the FIE has been frequently adopted as an index to examine the underlying mechanism of face processing, the emergence of the FIE is not robust with any configural alteration but dependent on the ratio of configural alteration.


Author(s):  
Chrisanthi Nega

Abstract. Four experiments were conducted investigating the effect of size congruency on facial recognition memory, measured by remember, know and guess responses. Different study times were employed, that is extremely short (300 and 700 ms), short (1,000 ms), and long times (5,000 ms). With the short study time (1,000 ms) size congruency occurred in knowing. With the long study time the effect of size congruency occurred in remembering. These results support the distinctiveness/fluency account of remembering and knowing as well as the memory systems account, since the size congruency effect that occurred in knowing under conditions that facilitated perceptual fluency also occurred independently in remembering under conditions that facilitated elaborative encoding. They do not support the idea that remember and know responses reflect differences in trace strength.


Sign in / Sign up

Export Citation Format

Share Document