Amelioration of nicotinamide adenine dinucleotide phosphate–oxidase mediated stress reduces cell death after blast-induced traumatic brain injury

2015 ◽  
Vol 166 (6) ◽  
pp. 509-528.e1 ◽  
Author(s):  
Brandon P. Lucke-Wold ◽  
Zachary J. Naser ◽  
Aric F. Logsdon ◽  
Ryan C. Turner ◽  
Kelly E. Smith ◽  
...  
Science ◽  
2019 ◽  
Vol 365 (6455) ◽  
pp. 793-799 ◽  
Author(s):  
Shane Horsefield ◽  
Hayden Burdett ◽  
Xiaoxiao Zhang ◽  
Mohammad K. Manik ◽  
Yun Shi ◽  
...  

SARM1 (sterile alpha and TIR motif containing 1) is responsible for depletion of nicotinamide adenine dinucleotide in its oxidized form (NAD+) during Wallerian degeneration associated with neuropathies. Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors recognize pathogen effector proteins and trigger localized cell death to restrict pathogen infection. Both processes depend on closely related Toll/interleukin-1 receptor (TIR) domains in these proteins, which, as we show, feature self-association–dependent NAD+ cleavage activity associated with cell death signaling. We further show that SARM1 SAM (sterile alpha motif) domains form an octamer essential for axon degeneration that contributes to TIR domain enzymatic activity. The crystal structures of ribose and NADP+ (the oxidized form of nicotinamide adenine dinucleotide phosphate) complexes of SARM1 and plant NLR RUN1 TIR domains, respectively, reveal a conserved substrate binding site. NAD+ cleavage by TIR domains is therefore a conserved feature of animal and plant cell death signaling pathways.


2012 ◽  
Vol 29 (7) ◽  
pp. 1401-1409 ◽  
Author(s):  
Seok Joon Won ◽  
Bo Young Choi ◽  
Byung Hoon Yoo ◽  
Min Sohn ◽  
Weihai Ying ◽  
...  

Author(s):  
M. Arif Hayat

Although it is recognized that niacin (pyridine-3-carboxylic acid), incorporated as the amide in nicotinamide adenine dinucleotide (NAD) or in nicotinamide adenine dinucleotide phosphate (NADP), is a cofactor in hydrogen transfer in numerous enzyme reactions in all organisms studied, virtually no information is available on the effect of this vitamin on a cell at the submicroscopic level. Since mitochondria act as sites for many hydrogen transfer processes, the possible response of mitochondria to niacin treatment is, therefore, of critical interest.Onion bulbs were placed on vials filled with double distilled water in the dark at 25°C. After two days the bulbs and newly developed root system were transferred to vials containing 0.1% niacin. Root tips were collected at ¼, ½, 1, 2, 4, and 8 hr. intervals after treatment. The tissues were fixed in glutaraldehyde-OsO4 as well as in 2% KMnO4 according to standard procedures. In both cases, the tissues were dehydrated in an acetone series and embedded in Reynolds' lead citrate for 3-10 minutes.


Sign in / Sign up

Export Citation Format

Share Document