scholarly journals Emerging molecular mediators and targets for age-related skeletal muscle atrophy

2020 ◽  
Vol 221 ◽  
pp. 44-57 ◽  
Author(s):  
Lemuel A. Brown ◽  
Steve D. Guzman ◽  
Susan V. Brooks
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Jie Yin ◽  
Lele Yang ◽  
Yangli Xie ◽  
Yan Liu ◽  
Sheng Li ◽  
...  

2013 ◽  
Vol 12 (4) ◽  
pp. 898-906 ◽  
Author(s):  
Benjamin T. Wall ◽  
Marlou L. Dirks ◽  
Luc J.C. van Loon

2005 ◽  
Vol 35 (6) ◽  
pp. 473-483 ◽  
Author(s):  
Amie J Dirks ◽  
Christiaan Leeuwenburgh

Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3089
Author(s):  
Tomohiko Shirakawa ◽  
Aki Miyawaki ◽  
Takuma Matsubara ◽  
Nobuaki Okumura ◽  
Hideto Okamoto ◽  
...  

Honeybees produce royal jelly (RJ) from their cephalic glands. Royal jelly is a source of nutrition for the queen honey bee throughout its lifespan and is also involved in fertility and longevity. Royal jelly has long been considered beneficial to human health. We recently observed that RJ delayed impairment of motor function during aging, affecting muscle fiber size. However, how RJ affects skeletal muscle metabolism and the functional component of RJ is as of yet unidentified. We demonstrate that feeding mice with RJ daily prevents a decrease in myofiber size following denervation without affecting total muscle weight. RJ did not affect atrophy-related genes but stimulated the expression of myogenesis-related genes, including IGF-1 and IGF receptor. Trans-10-hydroxy-2-decenoic acid (10H2DA) and 10-hydroxydecanoic acid (10HDAA), two major fatty acids contained in RJ. After ingestion, 10H2DA and 10HDAA are metabolized into 2-decenedioic acid (2DA) and sebacic acid (SA) respectively. We found that 10H2DA, 10HDAA, 2DA, and SA all regulated myogenesis of C2C12 cells, murine myoblast cells. These novel findings may be useful for potential preventative and therapeutic applications for muscle atrophy disease included in Sarcopenia, an age-related decline in skeletal muscle mass and strength.


2015 ◽  
Vol 206 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Teresa B. Pagano ◽  
Slawomir Wojcik ◽  
Alessandro Costagliola ◽  
Davide De Biase ◽  
Salvatore Iovino ◽  
...  

2020 ◽  
Vol 75 (11) ◽  
pp. 2081-2088
Author(s):  
Dongtao Wang ◽  
Yajun Yang ◽  
Xiaohu Zou ◽  
Jing Zhang ◽  
Zena Zheng ◽  
...  

Abstract Skeletal muscle atrophy in the aged causes loss in muscle mass and functions. Naturally occurring antioxidant flavonoid apigenin is able to ameliorate obesity- and denervation-induced muscle atrophies, but its effects on age-related muscle atrophy remain unknown. We hypothesized that apigenin can relieve muscle atrophy in aged mice, probably through special effects on reactive oxygen species and enzymes with antioxidant functions. For the male mice of the study, apigenin showed significant dose-dependent effects in relieving aging-related muscle atrophy according to results of frailty index as indicator of frailty associated with aging, grip strength, and running distance. Apigenin also improved myofiber size and morphological features and increased mitochondria number and volume, as manifested by succinate dehydrogenase staining and transmission electron microscopy. Our tests also suggested that apigenin promoted activities of enzymes such as superoxide dismutase and glutathione peroxidase for antioxidation and those for aerobic respiration such as mitochondrial respiratory enzyme complexes I, II, and IV, increased ATP, and enhanced expression of genes such as peroxisome proliferator-activated receptor-γ coactivator 1α, mitochondrial transcription factor A, nuclear respiratory factor-1, and ATP5B involved in mitochondrial biogenesis. The data also suggested that apigenin inhibited Bcl-2/adenovirus E1B 19kD-interacting protein 3 and DNA fragmentation as indicators of mitophagy and apoptosis in aged mice with skeletal muscle atrophy. Together, the results suggest that apigenin relieves age-related skeletal muscle atrophy through reducing oxidative stress and inhibiting hyperactive autophagy and apoptosis.


Sign in / Sign up

Export Citation Format

Share Document