scholarly journals Acceleration of age‐related skeletal muscle atrophy and oxidative stress in the mice lacking of CuZnSOD

2006 ◽  
Vol 20 (5) ◽  
Author(s):  
Wook Song ◽  
Florian Muller ◽  
Arlan Richardson ◽  
Holly Van Remmen
2007 ◽  
Vol 55 (1) ◽  
pp. S254
Author(s):  
M. Neal ◽  
Y. Sun ◽  
S. K. Bhattacharya ◽  
R. A. Ahokas ◽  
I. C. Gerling ◽  
...  

2020 ◽  
Vol 75 (11) ◽  
pp. 2081-2088
Author(s):  
Dongtao Wang ◽  
Yajun Yang ◽  
Xiaohu Zou ◽  
Jing Zhang ◽  
Zena Zheng ◽  
...  

Abstract Skeletal muscle atrophy in the aged causes loss in muscle mass and functions. Naturally occurring antioxidant flavonoid apigenin is able to ameliorate obesity- and denervation-induced muscle atrophies, but its effects on age-related muscle atrophy remain unknown. We hypothesized that apigenin can relieve muscle atrophy in aged mice, probably through special effects on reactive oxygen species and enzymes with antioxidant functions. For the male mice of the study, apigenin showed significant dose-dependent effects in relieving aging-related muscle atrophy according to results of frailty index as indicator of frailty associated with aging, grip strength, and running distance. Apigenin also improved myofiber size and morphological features and increased mitochondria number and volume, as manifested by succinate dehydrogenase staining and transmission electron microscopy. Our tests also suggested that apigenin promoted activities of enzymes such as superoxide dismutase and glutathione peroxidase for antioxidation and those for aerobic respiration such as mitochondrial respiratory enzyme complexes I, II, and IV, increased ATP, and enhanced expression of genes such as peroxisome proliferator-activated receptor-γ coactivator 1α, mitochondrial transcription factor A, nuclear respiratory factor-1, and ATP5B involved in mitochondrial biogenesis. The data also suggested that apigenin inhibited Bcl-2/adenovirus E1B 19kD-interacting protein 3 and DNA fragmentation as indicators of mitophagy and apoptosis in aged mice with skeletal muscle atrophy. Together, the results suggest that apigenin relieves age-related skeletal muscle atrophy through reducing oxidative stress and inhibiting hyperactive autophagy and apoptosis.


2018 ◽  
Vol 315 (5) ◽  
pp. C609-C622 ◽  
Author(s):  
Avisek Majumder ◽  
Mahavir Singh ◽  
Jyotirmaya Behera ◽  
Nicholas T. Theilen ◽  
Akash K. George ◽  
...  

Although hyperhomocysteinemia (HHcy) occurs because of the deficiency in cystathionine-β-synthase (CBS) causing skeletal muscle dysfunction, it is still unclear whether this effect is mediated through oxidative stress, endoplasmic reticulum (ER) stress, or both. Nevertheless, there is no treatment option available to improve HHcy-mediated muscle injury. Hydrogen sulfide (H2S) is an antioxidant compound, and patients with CBS mutation do not produce H2S. In this study, we hypothesized that H2S mitigates HHcy-induced redox imbalance/ER stress during skeletal muscle atrophy via JNK phosphorylation. We used CBS+/−mice to study HHcy-mediated muscle atrophy, and treated them with sodium hydrogen sulfide (NaHS; an H2S donor). Proteins and mRNAs were examined by Western blots and quantitative PCR. Proinflammatory cytokines were also measured. Muscle mass and strength were studied via fatigue susceptibility test. Our data revealed that HHcy was detrimental to skeletal mass, particularly gastrocnemius and quadriceps muscle weight. We noticed that oxidative stress was reversed by NaHS in homocysteine (Hcy)-treated C2C12 cells. Interestingly, ER stress markers (GRP78, ATF6, pIRE1α, and pJNK) were elevated in vivo and in vitro, and NaHS mitigated these effects. Additionally, we observed that JNK phosphorylation was upregulated in C2C12 after Hcy treatment, but NaHS could not reduce this effect. Furthermore, inflammatory cytokines IL-6 and TNF-α were higher in plasma from CBS as compared with wild-type mice. FOXO1-mediated Atrogin-1 and MuRF-1 upregulation were attenuated by NaHS. Functional studies revealed that NaHS administration improved muscle fatigability in CBS+/−mice. In conclusion, our work provides evidence that NaHS is beneficial in mitigating HHcy-mediated skeletal injury incited by oxidative/ER stress responses.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Jie Yin ◽  
Lele Yang ◽  
Yangli Xie ◽  
Yan Liu ◽  
Sheng Li ◽  
...  

2020 ◽  
Vol 221 ◽  
pp. 44-57 ◽  
Author(s):  
Lemuel A. Brown ◽  
Steve D. Guzman ◽  
Susan V. Brooks

Sign in / Sign up

Export Citation Format

Share Document