Numerical study on the heat transfer performance and efficiency in a rectangular duct with new winglet shapes in turbulent flow

2020 ◽  
Vol 17 ◽  
pp. 100490
Author(s):  
Hendrik Gesell ◽  
Varchasvi Nandana ◽  
Uwe Janoske
Author(s):  
Feng Sun ◽  
G.-X. Wang

This paper presents a numerical study of turbulent flow and heat transfer in a bayonet tube under steady state. First, various turbulent models and wall treatment methods have been tested and validated against the experimental result from a turbulent air jet. The proper combination of turbulent model and wall treatment is then recommended for the turbulent flow within a bayonet tube. The study focuses on the heat transfer performance at the interface of working fluid and the outer tube wall under different Reynolds numbers. Various geometry parameters are considered in this work and the impact of geometry on the heat transfer performance is investigated. Results indicate that the heat transfer at the bottom of the bayonet tube is enhanced compared with that at the straight part. At low Re (< 8000), the maximum Nu occurs at the stagnation point, while the position of the maximum Nu moves away from the stagnant point as Re exceeds 8000. The results are believed to be helpful for the optimized design of a bayonet tube with fully turbulent flows.


2015 ◽  
Vol 26 (12) ◽  
pp. 1550140 ◽  
Author(s):  
Amin Ebrahimi ◽  
Ehsan Roohi

Flow patterns and heat transfer inside mini twisted oval tubes (TOTs) heated by constant-temperature walls are numerically investigated. Different configurations of tubes are simulated using water as the working fluid with temperature-dependent thermo-physical properties at Reynolds numbers ranging between 500 and 1100. After validating the numerical method with the published correlations and available experimental results, the performance of TOTs is compared to a smooth circular tube. The overall performance of TOTs is evaluated by investigating the thermal-hydraulic performance and the results are analyzed in terms of the field synergy principle and entropy generation. Enhanced heat transfer performance for TOTs is observed at the expense of a higher pressure drop. Additionally, the secondary flow generated by the tube-wall twist is concluded to play a critical role in the augmentation of convective heat transfer, and consequently, better heat transfer performance. It is also observed that the improvement of synergy between velocity and temperature gradient and lower irreversibility cause heat transfer enhancement for TOTs.


Sign in / Sign up

Export Citation Format

Share Document