Cooling power characteristics of half-cycle refrigeration system in LPG fuelled vehicles by auxiliary chiller as heat exchanger

Author(s):  
Muji Setiyo ◽  
Bagiyo Condro Purnomo ◽  
Budi Waluyo ◽  
Suroto Munahar ◽  
Muhammad Latifur Rochman ◽  
...  
2017 ◽  
Author(s):  
Sonawane C. R ◽  
Chintan Kantharia ◽  
Karan Shah ◽  
Neel Patel ◽  
Prikesh Bhatia ◽  
...  

2019 ◽  
Vol 8 (4) ◽  
pp. 2704-2712

The refrigerants are usually provided in the conventional refrigeration system despite the fact that, they produce CFCs and HCFCs, which are hazardous to the environment. However, these disadvantages can be overcome using air or inert gas in the thermoacoustic refrigeration system. The present research involves the effect of spacing of parallel plate stack on the performance of thermoacoustic refrigerator (TAR) in terms of temperature difference (∆T). The entire resonator system as well as other structural parts of the refrigerator are fabricated by using PVC to reduce conduction heat loss. Three parallel plate stacks have been used to study the performance of TAR considering different porosity ratios by varying the gap between the parallel plates (0.28 mm, 0.33 mm and 0.38 mm). The parallel plate stacks are fabricated by using aluminium and mylar sheet material and the working fluid used for the experimental study is helium. The experiments have been carried out with different drive ratios ranging from 0.6% to 1.6% with operating frequencies of 200 – 600 Hz. Also the mean operating pressure used for the experiment is 2 to 10 bar and cooling load of 2 to 10W are considered. The ∆T between the hot heat exchanger and cold heat exchanger is recorded using RTDs and Bruel and Kjaer data acquisition system. Experimental results shows that the lowest temperature measured at cold heat exchanger is -2.1 oC by maintaining the hot heat exchanger temperature at about 32 oC. The maximum temperature difference of 32.90 oC is achieved.


2001 ◽  
Author(s):  
Ali Heydari ◽  
Kathy Russell

Abstract A small refrigeration system for cooling of computer system components is evaluated. A thermodynamic model describing the performance of the cycle along with a computer simulation program is developed to evaluate its performance. The refrigeration system makes use of a miniature reciprocating vapor compression compressor. Due to space limitations in some high performance computer servers, a miniature refrigeration system composed of a compressor, capillary tube, a compact condenser, and a cold-plate evaporator heat exchanger are used. Mathematical multi-zone formulation for modeling thermal-hydraulic performance of heat exchanger for the condenser and evaporator are presented. The throttling device is a capillary tube and there is presented a mathematical formulation for predicting refrigerant mass flow rate through the throttling device. A physically based efficiency formulation for simulating the performance of the miniature compressor is used. An efficient iterative numerical scheme with allowance for utilization of various refrigerants is developed to solve the governing system of equations. Using the simulation program, the effects of parameters such as the choice of working refrigerant, evaporating and condensing temperatures on system components and overall efficiency of system are studied. In addition, a RAS (reliability, availability and serviceability) discussion of the proposed CPU-cooling refrigeration solution is presented. The results of analysis show that the new technology not only overcomes many shortcomings of the traditional fan-cooled systems, but also has the capacity of increasing the cooling system’s coefficient of performance.


Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 210 ◽  
Author(s):  
Xiaojing Sun ◽  
Linlin Liu ◽  
Yu Zhuang ◽  
Lei Zhang ◽  
Jian Du

Compression–absorption cascade refrigeration system (CACRS) is the extension of absorption refrigeration system, which can be utilized to recover excess heat of heat exchanger networks (HENs) and compensate refrigeration demand. In this work, a stage-wise superstructure is presented to integrate the generation and evaporation processes of CACRS within HEN, where the generator is driven by hot process streams, and the evaporation processes provide cooling energy to HEN. Considering that the operating condition of CACRS has significant effect on the coefficient of performance (COP) of CACRS and so do the structure of HEN, CACRS and HEN are considered as a whole system in this study, where the operating condition and performance of CACRS and the structure of HEN are optimized simultaneously. The quantitative relationship between COP and operating variables of CACRS is determined by process simulation and data fitting. To accomplish the optimal design purpose, a mixed integer non-linear programming (MINLP) model is formulated according to the proposed superstructure, with the objective of minimizing total annual cost (TAC). At last, two case studies are presented to demonstrate that desired HEN can be achieved by applying the proposed method, and the results show that the integrated HEN-CACRS system is capable to utilize energy reasonably and reduce the total annualized cost by 38.6% and 37.9% respectively since it could recover waste heat from hot process stream to produce the cooling energy required by the system.


2003 ◽  
Vol 24 (6) ◽  
pp. 71-78 ◽  
Author(s):  
S. Waszkiewicz ◽  
S. Jenkins ◽  
H. Saidani-Scott ◽  
M. Tierney

Sign in / Sign up

Export Citation Format

Share Document