An efficient matrix that resists the nonspecific adsorption of protein to fabricate carbohydrate arrays on silicon

2006 ◽  
Vol 499 (1-2) ◽  
pp. 213-218 ◽  
Author(s):  
Naoto Shirahata ◽  
Atsushi Hozumi ◽  
Yoshiko Miura ◽  
Kazukiyo Kobayashi ◽  
Yoshio Sakka ◽  
...  
2019 ◽  
Author(s):  
Maria Teresa Odinolfi ◽  
Alessandro Romanato ◽  
Greta Bergamaschi ◽  
Alessandro Strada ◽  
Laura Sola ◽  
...  

The use of peptides in paper-based analytics is a highly appealing field, yet it suffers from severe limitations. This is mostly due to the loss of effective target recognition properties of this relatively small bioprobes upon nonspecific adsorption onto cellulose substrates. Here, we address this issue by introducing a simple polymer-based strategy to obtain clickable cellulosic surfaces, that we exploited for the chemoselective bioconjugation of peptide bioprobes. Our method largely outperformed standard adsorption-based immobilization strategy in a challenging, real-case immunoassay, namely the diagnostic discrimination of Zika+ individuals from healthy controls. Of note, the clickable polymeric coating not only allows efficient peptides bioconjugation, but it provides favorable anti-fouling properties to the cellulosic support. We envisage our strategy to broaden the repertoire of cellulosic materials manipulation and promote a renewed interest in peptide-based paper bioassays.


2019 ◽  
Author(s):  
Maria Teresa Odinolfi ◽  
Alessandro Romanato ◽  
Greta Bergamaschi ◽  
Alessandro Strada ◽  
Laura Sola ◽  
...  

The use of peptides in paper-based analytics is a highly appealing field, yet it suffers from severe limitations. This is mostly due to the loss of effective target recognition properties of this relatively small bioprobes upon nonspecific adsorption onto cellulose substrates. Here, we address this issue by introducing a simple polymer-based strategy to obtain clickable cellulosic surfaces, that we exploited for the chemoselective bioconjugation of peptide bioprobes. Our method largely outperformed standard adsorption-based immobilization strategy in a challenging, real-case immunoassay, namely the diagnostic discrimination of Zika+ individuals from healthy controls. Of note, the clickable polymeric coating not only allows efficient peptides bioconjugation, but it provides favorable anti-fouling properties to the cellulosic support. We envisage our strategy to broaden the repertoire of cellulosic materials manipulation and promote a renewed interest in peptide-based paper bioassays.


Chemosensors ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 43
Author(s):  
Jin Chul Yang ◽  
Suck Won Hong ◽  
Jinyoung Park

Surface imprinting used for template recognition in nanocavities can be controlled and improved by surface morphological changes. Generally, the lithographic technique is used for surface patterning concerning sensing signal amplification in molecularly imprinted polymer (MIP) thin films. In this paper, we describe the effects of silanized silica molds on sensing the properties of MIP films. Porous imprinted poly(MAA–co–EGDMA) films were lithographically fabricated using silanized or non-treated normal silica replica molds to detect 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide as the standard template. The silanized mold MIP film (st-MIP) (Δf = −1021 Hz) exhibited a better sensing response than the non-treated normal MIP (n-MIP) (Δf = −978 Hz) because the imprinting effects, which occurred via functional groups on the silica surface, could be reduced through silane modification. Particularly, two non-imprinted (NIP) films (st-NIP and n-NIP) exhibited significantly different sensing responses. The st-NIP (Δfst-NIP = −332 Hz) films exhibited lower Δf values than the n-NIP film (Δfn-NIP = −610 Hz) owing to the remarkably reduced functionality against nonspecific adsorption. This phenomenon led to different imprinting factor (IF) values for the two MIP films (IFst-MIP = 3.38 and IFn-MIP = 1.86), which was calculated from the adsorbed 2,4-D mass per poly(MAA–co–EGDMA) unit weight (i.e., QMIP/QNIP). Moreover, it was found that the st-MIP film had better selectivity than the n-MIP film based on the sensing response of analogous herbicide solutions. As a result, it was revealed that the patterned molds’ chemical surface modification, which controls the surface functionality of imprinted films during photopolymerization, plays a role in fabricating enhanced sensing properties in patterned MIP films.


Nanoscale ◽  
2021 ◽  
Author(s):  
Shenfei Zong ◽  
Yun Liu ◽  
Kuo Yang ◽  
Zhaoyan Yang ◽  
Zhuyuan Wang ◽  
...  

Non-specific adsorption in immunoassays has always been a major problem that affects the reliability of assay results. Despite the emergence of various methods which can reduce nonspecific adsorption, a universal...


1978 ◽  
Vol 87 (2) ◽  
pp. 299-305 ◽  
Author(s):  
John A. Smith ◽  
J.G.R. Hurrell ◽  
S.J. Leach

2007 ◽  
Vol 119 (22) ◽  
pp. 4182-4185 ◽  
Author(s):  
Manon J. W. Ludden ◽  
Alart Mulder ◽  
Robert Tampé ◽  
David N. Reinhoudt ◽  
Jurriaan Huskens

Sign in / Sign up

Export Citation Format

Share Document