WITHDRAWN: Fabrication of core–shell particles for a fluidized bed electrode in seawater desalination

2014 ◽  
Author(s):  
Eun-Hee Kim ◽  
Yeon-Gil Jung ◽  
Je-Hyun Lee ◽  
Jeong-Gu Yeo ◽  
Seung-Cheol Yang ◽  
...  
2014 ◽  
Vol 260 ◽  
pp. 424-428 ◽  
Author(s):  
Eun-Hee Kim ◽  
Yeon-Gil Jung ◽  
Je-Hyun Lee ◽  
Jeong-Gu Yeo ◽  
Seung-Cheol Yang ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 520
Author(s):  
Zhaoyang Wu ◽  
Chen Xian ◽  
Jixiang Jia ◽  
Xiangwei Liao ◽  
Hui Kong ◽  
...  

As electromagnetic functional materials, soft magnetic composites (SMCs) have great potential for applications in high-energy electromagnetic conversion devices. The most effective way to optimize the performance of an SMC is to incorporate it into insulated ferromagnetic core-shell particles with high structural uniformity and integrity. Fluidized bed chemical vapor deposition (FBCVD) is a facile and efficient technique for the synthesis of ferromagnetic/SiO2 core-shell particles. However, the formation mechanism and conditions of integrated ferromagnetic/SiO2 core-shell structures during the FBCVD process are not fully understood. On this basis, the formation process and the deposition time required for transformation of the Fe-6.5wt.%Si substrate into the Fe-6.5wt.%Si/SiO2 composite, and finally into the Fe-6.5wt.%Si/SiO2 core-shell structure, were investigated. Deposition of the insulative SiO2 coating onto the Fe-6.5wt.%Si particles was described by the three-dimensional island nucleation theory. The SiO2 islands were initially concentrated in rough areas on the Fe-6.5wt.%Si particle substrates owing to the lower heterogeneous nucleation energy. Deposition for at least 960 s was necessary to obtain the integrated ferromagnetic/SiO2 core-shell structure. The uniformity, integrity, and thickness of the insulative SiO2 coating increased with the increasing deposition time. The results in this study may provide a foundation for future kinetics investigations and the application of FBCVD technology.


2020 ◽  
Vol 65 (10) ◽  
pp. 904
Author(s):  
V. O. Zamorskyi ◽  
Ya. M. Lytvynenko ◽  
A. M. Pogorily ◽  
A. I. Tovstolytkin ◽  
S. O. Solopan ◽  
...  

Magnetic properties of the sets of Fe3O4(core)/CoFe2O4(shell) composite nanoparticles with a core diameter of about 6.3 nm and various shell thicknesses (0, 1.0, and 2.5 nm), as well as the mixtures of Fe3O4 and CoFe2O4 nanoparticles taken in the ratios corresponding to the core/shell material contents in the former case, have been studied. The results of magnetic research showed that the coating of magnetic nanoparticles with a shell gives rise to the appearance of two simultaneous effects: the modification of the core/shell interface parameters and the parameter change in both the nanoparticle’s core and shell themselves. As a result, the core/shell particles acquire new characteristics that are inherent neither to Fe3O4 nor to CoFe2O4. The obtained results open the way to the optimization and adaptation of the parameters of the core/shell spinel-ferrite-based nanoparticles for their application in various technological and biomedical domains.


2008 ◽  
Vol 20 (4) ◽  
pp. 1292-1298 ◽  
Author(s):  
M. P. L. Werts ◽  
M. Badila ◽  
C. Brochon ◽  
A. Hébraud ◽  
G. Hadziioannou

Nano Letters ◽  
2014 ◽  
Vol 14 (4) ◽  
pp. 2140-2149 ◽  
Author(s):  
Maria E. Stournara ◽  
Yue Qi ◽  
Vivek B. Shenoy

2016 ◽  
Vol 8 (15) ◽  
pp. 3061-3068 ◽  
Author(s):  
Christina Meisenbichler ◽  
Julia S. Rauch ◽  
Yüksel Güzel ◽  
Eva-Maria Wernig ◽  
Dieter Schemeth ◽  
...  

Selective enrichment of phosphorylated peptides by magnetic ytterbium oxide core-shell particles.


2005 ◽  
Vol 84 (1-3) ◽  
pp. 254-260 ◽  
Author(s):  
Jimin Du ◽  
Zhimin Liu ◽  
Buxing Han ◽  
Zhonghao Li ◽  
Jianling Zhang ◽  
...  

2007 ◽  
Vol 104 (2) ◽  
pp. 1195-1199 ◽  
Author(s):  
Jing Wang ◽  
Ya-qing Feng ◽  
Jun-wei Guo ◽  
Yu-kun Li ◽  
Xiang-gao Li
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document