Reliability of tunnel lining design using the Hyperstatic Reaction Method

2018 ◽  
Vol 77 ◽  
pp. 59-67 ◽  
Author(s):  
Henrique M. Kroetz ◽  
Ngoc Anh Do ◽  
Daniel Dias ◽  
André T. Beck
2020 ◽  
Vol 60 (3) ◽  
pp. 592-607
Author(s):  
Dianchun Du ◽  
Daniel Dias ◽  
Ngocanh Do ◽  
Tronghung Vo

2016 ◽  
Vol 2 (6) ◽  
pp. 254-261
Author(s):  
Rahim Hassani ◽  
Rouhollah Basirat

Underground structures often have abrupt changes in structural stiffness or ground conditions such as junctions of tunnels, tunnel portal in slopes, and niches in road tunnels. At these locations, stiffness differences may subject the structure to differential movements and generate stress concentrations. Because of adversity in these issues, they need a three dimensional analysis. This paper proposes a numerical approach to the hyperstatic reaction method (HRM) for three dimensional analysis of permanent tunnel linings. In this paper, three dimensional numerical modelling is performed by considering hyperstatic reaction concepts. Designing is done for Manjil-Rudabar freeway project, Tunnel No. 2. The numerical analyses performed for Operational Design Earthquake (ODE) and Maximum Design Earthquake (MDE) loading conditions. Then interaction diagram between axial force and bending moment used for investigating the capacity of tunnel lining. The numerical results show that although more axial forces are created in tunnel lining for ODE condition, but the points in the P-M diagrams are located in the furthest distance to the diagram border (tunnel supporting system); because of less bending moment in this condition. Therefore, the safety factor in ODE condition is more than MDE condition. This numerical processing presented that the HRM is a proper, fast, and practical method for tunnel designers.


2016 ◽  
Vol 2 (6) ◽  
pp. 244-253 ◽  
Author(s):  
Rahim Hassani ◽  
Rouhollah Basirat

The increase of bored tunnels in the entire world has raised the question how to design the tunnel structure in an efficient way. This paper proposes a numerical approach to the Hyperstatic Reaction Method (HRM) for analysing permanent tunnel linings. The permanent tunnel lining is known as main structure of tunnel maintenance during the time. The HRM is one of the analysis methods for tunnel lining in long term. In this paper, two dimensional numerical modelling is performed by considering hyperstatic reaction concepts. Loading is done after the calculation of long term loads, and ground reaction is simulated by springs. Designing is done for Manjil-Rudabar freeway project, Tunnel No. 2. The numerical analyses were performed for Operational Design Earthquake (ODE) and Maximum Design Earthquake (MDE) loading conditions. A new simplified approach is used for considering the effect of earthquake loading on the tunnel lining. Then, an interaction diagram between axial force and bending moment used for investigating the capacity of tunnel lining. The thickness of tunnel lining and armature are calculated for three sections based on induced forces in tunnel lining. These forces were different in every section according to the load combinations, rock mechanics properties, lining properties, and overburden.  The numerical results showed that the forces in tunnel lining for MDE condition is approximately 50% more than ODE condition in earthquake loading. This numerical processing presented that the HRM is a proper, fast, and practical method for designing and analysing the tunnel lining.


2018 ◽  
Vol 55 (2) ◽  
pp. 155-170 ◽  
Author(s):  
Dong-ming Zhang ◽  
Kok-Kwang Phoon ◽  
Qun-fang Hu ◽  
Hong-wei Huang

This paper presents a nonlinear solution of a radial subgrade reaction–displacement (pk–ur) curve for circular tunnel lining design in undrained clay. With the concept of soil shear strength nonlinearly mobilized with shear strain, an analytical solution of pk is obtained using the mobilized strength design method. Two typical deformation modes are considered, namely oval and uniform. A total of 197 orthogonally designed cases are used to calibrate the proposed nonlinear solution of pk using the finite element method with the hardening soil model. The calibration results are summarized using a correction factor, η, which is defined as the ratio of pk_FEM to pk_MSD. It is shown that η is correlated to some input parameters. If this correlation is removed by a regression equation, f, the modified solution f(pk_MSD) agrees very well with pk_FEM. Although in reality the mobilized soil strength varies with principal stress direction, it is found that a simple average of plane strain compression and extension results is sufficient to produce the above agreement. The proposed nonlinear pk–ur curve is applied to an actual tunnel lining design example. The predicted tunnel deformations agree very well with the measured data. In contrast, a linear pk model would produce an underestimation of tunnel convergence and internal forces by 2–4 times due to the overestimation of pk at a large strain level.


2020 ◽  
Vol 10 (19) ◽  
pp. 6705
Author(s):  
Marek Mohyla ◽  
Karel Vojtasik ◽  
Eva Hrubesova ◽  
Martin Stolarik ◽  
Jan Nedoma ◽  
...  

This paper presents an approach that enables the specific characteristics of a primary tunnel lining implemented using numerical modelling to be taken into account during its design. According to the fundamental principles of the New Austrian Tunnelling Method, the primary lining undergoes time-dependent deformation, which is determined by its design. The main design element is shotcrete, which, shortly after its application, interacts with the surrounding rock mass and steel arch frame. The primary lining ensures the equilibrium stress–strain state of “rock mass–tunnel lining” during excavation. The structural interaction varies depending on the hardening of the shotcrete, the rheological properties of the rock mass, and other factors. The proposed approach uses the Homogenisation software application, which was developed by the Faculty of Civil Engineering at the Department of Geotechnics and Underground Engineering of the VSB—Technical University of Ostrava. This software allows the heterogeneous structure of the lining to be considered by replacing it with a homogenous structure. The parameters of the homogeneous primary lining, which take into account the steel reinforcement elements and the time-dependent property of the shotcrete, are included in numerical models.


2020 ◽  
Vol 22 ◽  
pp. 100321 ◽  
Author(s):  
Ngoc Anh Do ◽  
Daniel Dias ◽  
Zixin Zhang ◽  
Xin Huang ◽  
Tai Tien Nguyen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document