scholarly journals Fire design rules to predict the moment capacities of thin-walled floor joists subject to non-uniform temperature distributions

2016 ◽  
Vol 105 ◽  
pp. 29-43 ◽  
Author(s):  
Balachandren Baleshan ◽  
Mahen Mahendran
2014 ◽  
Vol 578-579 ◽  
pp. 180-183
Author(s):  
Li Zhu ◽  
Xu Dong Wang ◽  
Pei Jun Wang

The fire design of structural members depends greatly on temperature distributions. This paper focuses on the temperature distributions of protected cellular beams subject to fire. Modeling in ABAQUS indicates that the fire protection makes a big difference to the temperature distributions of cellular beams. A continuous drop in temperature in the upper region of the web occurs due to heat transfer from the web to the top flange, and consequently to the ambient. Heat transfer between the web and the bottom flange also takes place resulting in non-uniform temperature distributions in the lower region of the web. Comparison with predictions from the European codes shows a good correlation between each other, but with some discrepancies.


2021 ◽  
Vol 19 (2) ◽  
pp. 209
Author(s):  
Goran Janevski ◽  
Predrag Kozić ◽  
Ratko Pavlović ◽  
Strain Posavljak

In this paper, the Lyapunov exponent and moment Lyapunov exponents of two degrees-of-freedom linear systems subjected to white noise parametric excitation are investigated. The method of regular perturbation is used to determine the explicit asymptotic expressions for these exponents in the presence of small intensity noises. The Lyapunov exponent and moment Lyapunov exponents are important characteristics for determining both the almost-sure and the moment stability of a stochastic dynamic system. As an example, we study the almost-sure and moment stability of a thin-walled beam subjected to stochastic axial load and stochastically fluctuating end moments.  The validity of the approximate results for moment Lyapunov exponents is checked by numerical Monte Carlo simulation method for this stochastic system.


2016 ◽  
Vol 76 ◽  
pp. 504-509 ◽  
Author(s):  
Tairan Fu ◽  
Minghao Duan ◽  
Jibin Tian ◽  
Congling Shi

Volume 4 ◽  
2004 ◽  
Author(s):  
Tom Mautner

One module in a bioagent detector currently under development involves a new two-heater, flow-through polymerase chain reaction (PCR) module which is being designed to save space and power and to reduce the amplification time. As in all PCR devices, thermal cycling requires three temperatures and residence times. These are 90–95°C for DNA denaturation, 50–65°C for hybridization and 72–77°C for replication with a time ratio of 4:9:4. The current design uses two heaters with heat conduction in the substrate providing the hybridization temperature. Typically, the flow and temperature fields in microfluidic devices have three-dimensional complexity, thus numerical simulations were performed to provide design guidelines in the development of the two-heater PCR device. The lattice Boltzmann (LB) method was used to perform low Reynolds number (typically Re = 0.10) simulations for two and three dimensional channel geometries having various wall temperature distributions. The momentum and thermal lattice Boltzmann equations were coupled via a body force term in the momentum equation. Initial computations using two- and three-heater configurations in two dimensions demonstrated excellent comparisons with published data provided that both the top and bottom walls were heated. If only one wall was heated, large vertical thermal gradients occurred resulting in non-uniform temperature fields. However, when the same conditions were applied to three dimensional channels, lower temperatures were observed in the center of the channel regardless of the wall temperatures or channel aspect ratio. Parametric studies were performed to evaluate the effects of thermal coupling, thermal diffusion coefficients, entrance temperatures, wall temperature configurations and channel geometry. If was found that moderate variation of the thermal diffusion coefficient produced only minor differences in the temperature field, and large changes in the thermal coupling magnitude demonstrated transition from natural to forced convection flows. The simulations also indicate that the largest effect on flow and temperature uniformity arises from the applied wall temperature distribution (various thickness channel walls). It was found, in 2D, that if the channel wall starts from ambient temperature, the applied heating, on the outer surfaces only, may not result in the desired wall or fluid temperatures. However, once the channel walls are heated to a uniform temperature, excellent temperature distributions are obtained for both thick and thin channel walls. These results indicate that the two-heater design has potential in providing a new flow-through PCR device. However, careful attention must be paid to the wall heater design to provide the required sample temperatures.


Author(s):  
Henry Schau ◽  
Lilit Mkrtchyan ◽  
Michael Johannes

The influence of imperfections on the instability bending moment of thin-walled straight pipes with D/t-ratios (D - outside diameter, t - wall thickness) up to 140 is determined using nonlinear Finite Element (FE) analyses. The analyses show that the type and size of the imperfection, the D/t ratio and the material properties have significant influences on the instability moment. The nominal bending stress of pipes (yield stress 500 MPa) with D/t > 70 and an ovality of 0.5% is smaller than the yield stress at the instability point. That means, the failure occurs by buckling in the elastic range of the nominal bending stress. In static analyses the moment decreases abruptly after reaching the instability moment. In the dynamic analyses the pipe jumps abruptly to the state with smaller moment. The obtained results are applied to calculate the B2 index for pipes with D/t ≤ 140. The B2 indices for thin-walled straight pipes with D/t > 40 are considerably higher than 1.0. In general, there is a good agreement between the calculated B2 values and the values of the ASME Code. A correction factor for higher temperatures is not necessary. The allowable moments calculated with the B2 index and the stress intensification factor i are compared. The bending moments from disabled thermal expansion and anchor movements have the same effect on the failure due to (plastic) buckling as the primary moments and must be taken into account.


2004 ◽  
Author(s):  
Tom Mautner

One module in a bioagent detector currently under development involves a flow-through PCR module [1] [3] [4]. Conventional, flow-through PCR devices utilize three heaters to obtain the required temperatures in each zone, the length of which is specified by the required sample residence times. An alternate design uses two wall heaters with substrate conduction supplying the center zone temperature. The concept of using a conduction based PCR device led to an extensive computational study of various channel wall temperature profiles that would produce enhanced mixing in a variety of microfluidic devices. The results are applicable to micro channel designs in general even tough motivated by the conduction based PCR configuration. The lattice Boltzmann (LB) method was used to perform low Reynolds number (typically Re=0.10) simulations for two and three dimensional channel geometries having various wall temperature distributions. The momentum and thermal lattice Boltzmann equations were coupled via a body force term in the momentum equation. Initial computations using two- and three-heater configurations in two dimensions demonstrated excellent comparisons with published data provided that both the top and bottom walls were heated. If only one wall was heated, large vertical thermal gradients occurred resulting in non-uniform temperature fields. However, when the same conditions were applied to three dimensional channels, lower temperatures were observed in the center of the channel regardless of the wall temperatures or channel aspect ratio. Parametric studies were performed to evaluate the effects of thermal coupling, thermal diffusion coefficients, entrance temperatures, wall temperature configurations and channel geometry. If was found that moderate variation of the thermal diffusion coefficient produced only minor differences in the temperature field, and large changes in the thermal coupling magnitude demonstrated transition from natural to forced convection flows. The simulations also indicate that the largest effect on flow and temperature uniformity arises from the applied wall temperature distribution (various thickness channel walls). It was found, in 2D, that if the channel wall starts from ambient temperature, the applied heating, on the outer surfaces only, may not result in the desired wall or fluid temperatures. However, once the channel walls are heated to a uniform temperature, excellent temperature distributions are obtained for both thick and thin channel walls. Additionally, a checkerboard pattern of wall heaters was used to test its application to promoting mixing. Results were favorable in creating enhanced mixing; however, the temperature pattern did not produce uniform temperature profiles in the channel.


Sign in / Sign up

Export Citation Format

Share Document