Experimental study on seismic performance of latticed CFST-RC column connected with RC web

2018 ◽  
Vol 126 ◽  
pp. 258-265 ◽  
Author(s):  
Raghabendra Yadav ◽  
Huihui Yuan ◽  
Baochun Chen ◽  
Zhibin Lian
Author(s):  
Jeongjin Choi ◽  
◽  
Taehun Lee ◽  
Byeongjin Park ◽  
Kwanggun Rho ◽  
...  

Author(s):  
Jun Zhao ◽  
Wenbo Ren ◽  
Xiaohui Ruan ◽  
Xinglong Gong ◽  
Chenzhe Si

2011 ◽  
Vol 243-249 ◽  
pp. 1435-1438 ◽  
Author(s):  
Ming Chen ◽  
Yang Sun ◽  
Bing Qian Pi

The double C steel section is made of two C steels with gusset plate through bolts. A ridge joint of double C steel is studied through experiment under cyclic loading in this paper. Through the four specimens with different gusset-plate’s thickness and bolt spacing, we analyze the effect of the gusset-plate’s thickness and bolt spacing on stiffness, ductility and energy performance. At last we recommend the suitable gusset-plate’s thickness. The results can give a reference to the engineering application of cold-formed steel structure.


2013 ◽  
Vol 671-674 ◽  
pp. 1319-1323
Author(s):  
Zi Xue Lei ◽  
Yu Hang Han ◽  
San Sheng Dong ◽  
Jun Qing Guo

A centrally reinforced column is a new type of RC columns, formed by providing a reinforcement skeleton at the central part of the cross section of an ordinary RC column. Tests have shown that as compared with an ordinary RC column, this type of columns has a higher load carrying capacity and ductility. From the pushover analysis of a frame composed of ordinary RC columns and one consisting of centrally reinforced columns, their seismic performance under seismic load of 9-degree intensity was studied according to Chinese code, including target displacements, story-level displacements, interstory drifts, appearance and development of plastic hinges. The results indicate that although the dimensions of cross sections of columns in the frame with centrally reinforced columns are smaller than those of the ordinary frame, the former still has a higher overall load carrying capacity and seismic performance than the latter.


Author(s):  
Yong Wang ◽  
Huanjun Jiang ◽  
Chen Wu ◽  
Zihui Xu ◽  
Zhiyuan Qin

<p>Suspended ceiling systems (SCSs) experienced severe damage during strong earthquakes that occurred in recent years. The capacity of the ceiling component is a crucial factor affecting the seismic performance of SCS. Therefore, a series of static tests on suspended ceiling components under monotonic and cyclic loadings were carried out to investigate the seismic performance of the ceiling components. The ceiling components include main tee splices, cross tee latches and peripheral attachments. All specimens were tested under axial loading. Additionally, the static tests of cross tee latches subjected to shear and bending loadings were performed due to their seismic vulnerability. The failure pattern, load-carrying ability, deformation capacity and energy dissipation of the ceiling components are presented in detail in this study.</p>


Sign in / Sign up

Export Citation Format

Share Document