Experimental study and numerical analysis on seismic performance of FRP confined high-strength rectangular concrete-filled steel tube columns

2021 ◽  
Vol 162 ◽  
pp. 107560
Author(s):  
Zhihua Chen ◽  
Shaohua Dong ◽  
Yansheng Du
2013 ◽  
Vol 275-277 ◽  
pp. 2077-2083
Author(s):  
Kai Cheng Huo ◽  
Xian Cheng Shu ◽  
Huan Huan Yue

Measure the temperature change of concrete-filled steel tubular with high strength low heat micro-expansive in its hardening process with different mix proportion. Study self-stress of high strength low-heat micro-expansive and study the relations of the expansive admixtures quantity and its changing regularity with the time. Observe the fail of axial compression short column of concrete-filled steel tubular with high strength expansive under vertical loading, study the changing regularity of its stress under loading.


2019 ◽  
Vol 23 (4) ◽  
pp. 794-809
Author(s):  
Yong Yang ◽  
Xing Du ◽  
Yunlong Yu ◽  
Yongpu Pan

The ultra-high-strength concrete-encased concrete-filled steel tube column consists of a concrete-filled steel tube core and a rectangle-shaped reinforced concrete encasement. This article presents the seismic performance analysis of ultra-high-strength concrete-encased concrete-filled steel tube columns subjected to cyclic loading. Based on the measured load-lateral displacement hysteresis curves of six ultra-high-strength concrete-encased concrete-filled steel tube columns and two conventional RC columns, the seismic behaviours, such as the ductility, energy dissipation, stiffness and load-bearing capacity, were analysed. The effects of the arrangement of the stirrups and the layout of the prestressed steel strips on the seismic performance of the composite columns were critically examined. The test results indicated that the ductility and energy dissipation performance of the ultra-high-strength concrete-encased concrete-filled steel tube columns were increased by 74.8% and 162.7%, respectively, compared with the conventional columns. The configuration of the prestressed steel strip increased the ductility of the composite column by 28.9%–63% and increased the energy consumption performance by 160.2%–263.3%. By reducing the stirrup spacing and using prestressed steel strips, the concrete-filled steel tube core columns could be effectively confined, leading to a great enhancement in ductility, energy dissipation, stiffness and load-bearing capacity.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shufeng Li ◽  
Di Zhao ◽  
Yating Zhou

PurposeConcrete-filled steel tube structures are widely used for their high bearing capacity, good plasticity, good fire resistance and optimal seismic performance. In order to give full play to the advantages of concrete-filled steel tube, this paper proposes a prefabricated concrete-filled steel tube frame joint.Design/methodology/approachThe concrete-filled steel tube column and beam are connected by high-strength bolted end-plate, and the steel bars in the concrete beam are welded vertically with the end-plates through the enlarged pier head. In addition, the finite element software ABAQUS is used numerically to study the seismic performance of the structure.FindingsThe ductility coefficient of the joint is in 1.72–6.82, and greater than 2.26 as a whole. The equivalent viscous damping coefficient of the joint is 0.13–3.03, indicating that the structure has good energy dissipation capacity.Originality/valueThe structure is convenient for construction and overcomes the shortcomings of the previous on-site welding and on-site concrete pouring. The high-strength bolted end-plate connection can effectively transfer the load, and each component can give play to its material characteristics.


Sign in / Sign up

Export Citation Format

Share Document