Effective usage of high strength steel tubes: Axial compressive behavior of hybrid FRP-concrete-steel solid columns

2020 ◽  
Vol 154 ◽  
pp. 106796 ◽  
Author(s):  
Yong-Chang Guo ◽  
Yu-Yi Ye ◽  
Guan-Lin ◽  
Jun-Fan Lv ◽  
Yu-Lei Bai ◽  
...  
2009 ◽  
Vol 36 (8) ◽  
pp. 1044-1057 ◽  
Author(s):  
Nader Abedrabbo ◽  
Robert Mayer ◽  
Alan Thompson ◽  
Christopher Salisbury ◽  
Michael Worswick ◽  
...  

Author(s):  
Ramakrishna Koganti ◽  
Sergio Angotti ◽  
Isadora van Riemsdijk ◽  
Robert C. Nelson ◽  
Jill Smith

To reach safety, emissions, and cost objectives, manufacturers of automotive body structural components shape thin gauge, high strength steel tube using a series of manufacturing steps that often include bending, preforming and hydroforming. Challenging grades and bend severity require a sensitive optimization of the tubular bending process. Lubricants play a significant role in establishing a successful bending process. In this study, the performance of two lubricants, Hydrodraw 551 and HFO 20, were investigated for bending Dual Phase 780 (DP780) and High Strength Low Alloy 350 (HSLA350) thin-walled steel tubes. Formability success was evaluated in terms of wrinkling, thinning strain and final geometry. Lubricant performance was found to be sensitive to grade and application site. HFO 20 was found to be a poor choice for bending DP780 tube.


2014 ◽  
Vol 638-640 ◽  
pp. 101-104
Author(s):  
Yi Liang Peng ◽  
Guo Tian Li ◽  
Xuan Min Han ◽  
Lei Chen

With the rapid development of power transmission and transformation projects in China, steel supporting structure has already became the most popular structural form for these structures. However, the limit of steel grade used for current substation supporting structures is normally Q420, compared with that of Q690 used in other countries. When the high-strength steel is used, the geometric parameters of section for members become smaller, and the stability of members is the most important factors to influence the bearing capacity of structures. The stability factor for axial loaded steel members in current 《Code for design of steel structures》(GB50017-2003) was derived based on the experimental results for steel members with lower steel grade, the results are inevitably different from those for high-strength steel members. To make the calculations of Q690 high-strength steel tubes more accurate and reasonable, this paper conducts experimental study on the bearing capacity of Q690 high-strength steel tubes under axial load to provide scientific basis for practical design of these structures.


ce/papers ◽  
2021 ◽  
Vol 4 (2-4) ◽  
pp. 1606-1611
Author(s):  
Esmaeil Pournamazian Najafabadi ◽  
Amin Heidarpour ◽  
Sudhir Raina ◽  
Mehrdad Arashpour ◽  
Xiao‐Ling Zhao

Sign in / Sign up

Export Citation Format

Share Document