Structural performance of novel thin-walled composite cold-formed steel/PE-ECC beams

2021 ◽  
Vol 162 ◽  
pp. 107586
Author(s):  
Ahmed Sheta ◽  
Xing Ma ◽  
Yan Zhuge ◽  
Mohamed A. ElGawady ◽  
Julie E. Mills ◽  
...  
2013 ◽  
Vol 479-480 ◽  
pp. 1144-1148 ◽  
Author(s):  
Yeong Huei Lee ◽  
Cher Siang Tan ◽  
M.Md. Tahir ◽  
Shahrin Mohammad ◽  
Poi Ngian Shek ◽  
...  

For the connection stiffness and strength prediction, Eurocode has showed an inadequacy as it will be affected by the thin-walled behaviour of cold-formed steel in actual structural performance. This paper performs a study on the connection stiffness prediction for cold-formed steel top-seat flange cleat connection with various angle thickness. Validated finite element modelling technique is applied for further advanced investigation. From the developed finite element models, it was realized that Eurocode has overestimated by the analytical stiffness prediction using component method for the studied connection which reduces the structural integrity in the design stage. A new proposal on connection stiffness prediction with influence of angle thickness for cold-formed steel top-seat flange cleat connection is presented to assist practicing engineers to design the cold-formed connection in light steel framing.


2012 ◽  
Vol 166-169 ◽  
pp. 1304-1307 ◽  
Author(s):  
Shahrin Mohammad ◽  
M.Md. Tahir ◽  
Cher Siang Tan ◽  
Poi Ngian Shek

The needs of environmental conservation and speed development in construction industry today have forced the search for better technologies in structural roof truss construction. Cold-formed section is a better choice for roof truss system in sustainable design with several advantages e.g. reduce cutting down of trees, speedy in construction, stronger, lighter and flexible in erection. However the stability issues occurred when wide-span roof truss is implemented with thin-walled cold-formed steel member. A full scale testing for a 25 meter wide-span roof truss system was carried out at Universiti Teknologi Malaysia to study the structural performance. The overall span of the truss is 25m in length with the height of 4.7m and the width of 1.2 m, built up by cold-formed steel channel sections of 150 mm and 74 mm in depth. Uniform loads were placed on the top and bottom chords of the truss using cement bags. The roof truss deformed at a total load of 63.77 kN or 52.7% of the designed load. Failure modes of the truss system were being observed and discussed for further improvement of the truss design.


Author(s):  
Ali M. Shahhosseini ◽  
Glen Prater

One of major difficulties in developing and employing a concept model of a vehicle is to develop a simple and accurate model of joints. A vehicle joint is a subassembly formed by several members that intersect together. It is a thin-walled structure formed by overlapping metal sheets fastened by spot welds. The study of the joints has been important, because they can deform locally. This flexibility can affect noise, vibration and harshness (NVH) characteristics of a vehicle plus other structural performance characteristics under different loading conditions. The main difference between various kinds of concept models is the representation of body joints. Joints are important components of the auto body because they affect significantly, and in some cases, they even dominate, the static and dynamic behavior of a model. This paper introduces a new beam-like major compliant joint methodology. Joints are simulated with different parametric representations that present the major differences among various concept models. The development procedure of the beam-like major compliant joint is explained and the benefits of using this representation are discussed.


2017 ◽  
Vol 11 (1) ◽  
pp. 244-257 ◽  
Author(s):  
Xingyou Yao

Background: Cold-formed steel structural sections used in the walls of residential buildings and agricultural facilities are commonly C-shaped sections with web holes. These holes located in the web of sections can alter the elastic stiffness and the ultimate strength of a structural member. The objective of this paper is to study the buckling mode and load-carrying capacity of cold-formed thin-walled steel column with slotted web holes. Methods: Compression tests were conducted on 26 intermediate length columns with and without holes. The tested compressive members included four different kinds of holes. For each specimen, a shell finite element Eigen-buckling analysis and nonlinear analysis were also conducted. The influence of the slotted web hole on local and distortional buckling response had also been studied. The comparison on ultimate strength between test results and calculated results using Chinese cold-formed steel specification GB50018-2002, North American cold-formed steel specification AISI S100-2016, and nonlinear Finite Element method was made. Result: Test results showed that the distortional buckling occurred for intermediate columns with slotted holes and the ultimate strength of columns with holes was less than that of columns without holes. The ultimate strength of columns decreased with the increase in transverse width of hole in the cross-section of member. The Finite element analysis results showed that the web holes could influence on the elastic buckling stress of columns. The shell finite element could be used to model the buckling modes and analysis the ultimate strength of members with slotted web holes. The calculated ultimate strength shows that results predicted with AISI S100-2016 and analyzed using finite element method are close to test results. The calculated results using Chinese code are higher than the test results because Chinese code has no provision to calculate the ultimate strength of members with slotted web holes. Conclusion: The calculated method for cold-formed thin-walled steel columns with slotted web holes are proposed based on effective width method in Chinese code. The results calculated using the proposed method show good agreement with test results and can be used in engineering design for some specific cold-formed steel columns with slotted web holes studied in this paper.


2018 ◽  
Author(s):  
Viorel Ungureanu ◽  
Maria Kotełko ◽  
Łukasz Borkowski ◽  
Jan Grudziecki

2018 ◽  
Vol 1146 ◽  
pp. 142-151
Author(s):  
Viorel Ungureanu ◽  
Ioan Both ◽  
Mircea Burca ◽  
Ştefan Benzar ◽  
Thai Hoang Nguyen ◽  
...  

Within the WELLFORMED research project, ongoing at the CEMSIG Research Center of the Politehnica University of Timisoara, a new technological solution was proposed for built-up beams made of corrugated steel sheets for the web and thin-walled cold-formed steel profiles for the flanges, connected by spot welding. The research project integrates an extensive experimental program on such beams, using full scale specimens, to demonstrate the feasibility of the proposed solutions and to assess their performance, followed by numerical simulations to characterize and optimize the connecting details. The present paper presents the results of a large experimental program, on small specimens subjected to shear, consisting of two or three layers of steel sheet connected by spot welding.


Author(s):  
Eugenio Ruocco ◽  
Antonia Giovenale ◽  
Danilo Di Giacinto

This paper deals with the numerical impact analysis of tubular thin-walled steel-made elements with induced folding for energy dissipation application. The excellent deceleration of the impacting mass of axial collapsing structures favors their use in energy dissipation applications, such as impact resistance and rockfall protection. Dynamic Finite Element analyses have been carried out to evaluate the performance of vertical assemblies of cold-formed steel cell-shaped elements welded on each other to form collapsible tubular elements. In turn, these have been gathered in groups and restrained by galvanized steel wires to create modules. The axial collapse, which is the most effective energy absorption mechanism, has been triggered by shaping the elements' edge as serpentine. In the analysis, several assembly configurations have been subjected to a freefall rhombicuboctahedron-shaped rigid block impact; Falling height, impact angle, and block mass have been varied to investigate their effect on the performance. The numerical results show a good agreement when compared to those obtained through a real-scale experiment.


Sign in / Sign up

Export Citation Format

Share Document