Generalized Beam Theory deformation modes for steel–concrete composite bridge decks including shear connection flexibility

2021 ◽  
Vol 169 ◽  
pp. 108408
Author(s):  
Luís Vieira ◽  
Rodrigo Gonçalves ◽  
Dinar Camotim ◽  
José Oliveira Pedro
2014 ◽  
Vol 84 ◽  
pp. 325-334 ◽  
Author(s):  
Rodrigo Gonçalves ◽  
Rui Bebiano ◽  
Dinar Camotim

2021 ◽  
Vol 72 (7) ◽  
pp. 811-823
Author(s):  
Thang Phung Ba ◽  
Anh Lai Van

Shear connector (typically shear studs) plays a vital role as a transfer zone between steel and concrete in steel-concrete composite bridge girder. In the previous studies, the connection between steel beam and reinforced concrete slab were considered as continuous joint. However, in practice, this connection is discrete, which allows the slipping and peeling phenomenon between two layers (the influence of peeling is usually very small and could be ignored). To reflect this actual working mechanism, this study proposed a model of shear connection in the form of discrete points at the actual positions of studs for structural analysis. The model was simulated utilizing Timoshenko beam theory considering transverse shear effects. The numerical applications are carried out in order to compare two types of connections. The obtained results indicated that the proposed model properly reflected the actual performance of the structure and in some necessary cases, we should consider discrete connection for more accurate local results.


2018 ◽  
Vol 18 (05) ◽  
pp. 1850068 ◽  
Author(s):  
Rui Bebiano ◽  
Moshe Eisenberger ◽  
Dinar Camotim ◽  
Rodrigo Gonçalves

Generalized Beam Theory (GBT), intended to analyze the structural behavior of prismatic thin-walled members and structural systems, expresses the member deformed configuration as a combination of cross-section deformation modes multiplied by the corresponding longitudinal amplitude functions. The determination of the latter, often the most computer-intensive step of the analysis, is almost always performed by means of GBT-based “conventional” 1D (beam) finite elements. This paper presents the formulation, implementation and application of the so-called “exact element method” in the framework of GBT-based elastic free vibration analyses. This technique, originally proposed by Eisenberger (1990), uses the power series method to solve the governing differential equations and obtains the vibration eigenvalue problem from the boundary terms. A few illustrative numerical examples are presented, focusing mainly on the comparison between the combined accuracy and computational effort associated with the determination of vibration solutions with the exact and conventional GBT-based (finite) elements. This comparison shows that the GBT-based exact element method may lead to significant computational savings, particularly when the vibration modes exhibit large half-wave numbers.


2016 ◽  
Vol 100 ◽  
pp. 192-212 ◽  
Author(s):  
Giovanni Garcea ◽  
Rodrigo Gonçalves ◽  
Antonio Bilotta ◽  
David Manta ◽  
Rui Bebiano ◽  
...  

2018 ◽  
Author(s):  
Miguel Abambres

Original Generalized Beam Theory (GBT) formulations for elastoplastic first and second order (postbuckling) analyses of thin-walled members are proposed, based on the J2 theory with associated flow rule, and valid for (i) arbitrary residual stress and geometric imperfection distributions, (ii) non-linear isotropic materials (e.g., carbon/stainless steel), and (iii) arbitrary deformation patterns (e.g., global, local, distortional, shear). The cross-section analysis is based on the formulation by Silva (2013), but adopts five types of nodal degrees of freedom (d.o.f.) – one of them (warping rotation) is an innovation of present work and allows the use of cubic polynomials (instead of linear functions) to approximate the warping profiles in each sub-plate. The formulations are validated by presenting various illustrative examples involving beams and columns characterized by several cross-section types (open, closed, (un) branched), materials (bi-linear or non-linear – e.g., stainless steel) and boundary conditions. The GBT results (equilibrium paths, stress/displacement distributions and collapse mechanisms) are validated by comparison with those obtained from shell finite element analyses. It is observed that the results are globally very similar with only 9% and 21% (1st and 2nd order) of the d.o.f. numbers required by the shell finite element models. Moreover, the GBT unique modal nature is highlighted by means of modal participation diagrams and amplitude functions, as well as analyses based on different deformation mode sets, providing an in-depth insight on the member behavioural mechanics in both elastic and inelastic regimes.


Sign in / Sign up

Export Citation Format

Share Document