First and Second Order Elastoplastic Analyses of Thin-Walled Metal Members using Generalized Beam Theory

2018 ◽  
Author(s):  
Miguel Abambres

Original Generalized Beam Theory (GBT) formulations for elastoplastic first and second order (postbuckling) analyses of thin-walled members are proposed, based on the J2 theory with associated flow rule, and valid for (i) arbitrary residual stress and geometric imperfection distributions, (ii) non-linear isotropic materials (e.g., carbon/stainless steel), and (iii) arbitrary deformation patterns (e.g., global, local, distortional, shear). The cross-section analysis is based on the formulation by Silva (2013), but adopts five types of nodal degrees of freedom (d.o.f.) – one of them (warping rotation) is an innovation of present work and allows the use of cubic polynomials (instead of linear functions) to approximate the warping profiles in each sub-plate. The formulations are validated by presenting various illustrative examples involving beams and columns characterized by several cross-section types (open, closed, (un) branched), materials (bi-linear or non-linear – e.g., stainless steel) and boundary conditions. The GBT results (equilibrium paths, stress/displacement distributions and collapse mechanisms) are validated by comparison with those obtained from shell finite element analyses. It is observed that the results are globally very similar with only 9% and 21% (1st and 2nd order) of the d.o.f. numbers required by the shell finite element models. Moreover, the GBT unique modal nature is highlighted by means of modal participation diagrams and amplitude functions, as well as analyses based on different deformation mode sets, providing an in-depth insight on the member behavioural mechanics in both elastic and inelastic regimes.

2019 ◽  
Author(s):  
Miguel Abambres ◽  
Dinar Camotim ◽  
Nuno Silvestre

Structural systems made of high-strength and/or high-ductility metals are usually also rather slender, which means that their structural behavior and ultimate strength are often governed by a combination of plasticity and instability effects. Currently, the rigorous numerical analysis of such systems can only be achieved by resorting to complex and computationally costly shell finite element simulations. This work aims at supplying to designers/researchers an efficient and structurally clarifying alternative to assess the geometrically and/or materially non-linear behavior (up to and beyond the ultimate load) of prismatic thin-walled members, such as those built from cold-formed steel. The proposed approach is based on Generalized Beam Theory (GBT) and is suitable for members exhibiting arbitrary deformation patterns (e.g., global, local, distortional, shear) and made of non-linear isotropic materials (e.g., carbon/stainless steel grades or aluminum alloys). The paper begins by providing a critical overview of the physically and geometrically non-linear GBT formulation recently developed and validated by the authors (Abambres et al. 2012a), which is followed by the presentation and thorough discussion of several illustrative numerical results concerning the structural responses of 4 members (beams and columns) made of distinct (linear, bi-linear or highly non-linear) materials. The GBT results consist of equilibrium paths, modal participation diagrams and amplitude functions, stress contours, displacement profiles and collapse mechanisms some of them are compared with values obtained from ABAQUS shell finite element analyses. It is shown that the GBT modal nature makes it possible (i) to acquire in-depth knowledge on the member behavioral mechanics at any given equilibrium state (elastic or elastic-plastic), as well as (ii) to provide evidence of the GBT computational efficiency, which is achieved by excluding from the analyses all the deformation modes that do not play any role in a particular member structural response.


2015 ◽  
Vol 15 (01) ◽  
pp. 1540004 ◽  
Author(s):  
Cilmar Basaglia ◽  
Dinar Camotim

This paper deals with the application of beam finite element models based on generalized beam theory (GBT) to analyze the buckling behavior of four thin-walled steel structural systems, namely (i) beams belonging to storage rack systems, (ii) pitched-roof industrial frames, (iii) portal frames built from cold-formed rectangular hollow section (RHS) profiles and (iv) roof-supporting trusses, exhibiting different support conditions and subjected to various loadings. In particular, taking advantage of the GBT unique and structurally clarifying modal features, it is possible to assess how different geometries and/or bracing arrangements affect (improve) the local, distortional and/or global buckling behavior of the above structural systems. The accuracy of the GBT-based buckling results is assessed through the comparison with values yielded by rigorous shell finite element analyzes carried out in the code ANSYS. In spite of the disparity between the numbers of degrees of freedom involved, which are orders of magnitude apart, there is a virtual coincidence between the critical loads and mode shapes provided by the GBT (beam) and ANSYS (shell) finite element analyzes.


2019 ◽  
Author(s):  
Miguel Abambres ◽  
Dinar Camotim ◽  
Miguel Abambres

A 2nd order inelastic Generalised Beam Theory (GBT) formulation based on the J2 flow theory is proposed, being a promising alternative to the shell finite element method. Its application is illustrated for an I-section beam and a lipped-C column. GBT results were validated against ABAQUS, namely concerning equilibrium paths, deformed configurations, and displacement profiles. It was concluded that the GBT modal nature allows (i) precise results with only 22% of the number of dof required in ABAQUS, as well as (ii) the understanding (by means of modal participation diagrams) of the behavioral mechanics in any elastoplastic stage of member deformation .


2015 ◽  
Vol 15 (08) ◽  
pp. 1540021 ◽  
Author(s):  
Cilmar Basaglia ◽  
Dinar Camotim ◽  
Nuno Silvestre

This paper reports the results of an investigation on the use of Generalized Beam Theory (GBT) to assess the buckling and vibration behaviors of thin-walled members and frames built from cold-formed steel circular hollow section (CHS) profiles. Initially, the concepts and procedures involved in performing GBT buckling and vibration analyses are presented, paying particular attention to the derivation of the mass tensors that account for the influence of the inertia forces. Then, the formulation, numerical implementation and validation of a GBT-based beam finite element for isolated members are described. Next, the determination of the frame linear stiffness, geometric stiffness and mass matrices, which incorporate the influence of the frame joints, is addressed. Finally, in order to illustrate the application and capabilities of the proposed GBT finite element formulation, numerical results are presented and discussed — they concern the buckling and vibration behaviors of an "L-shaped" frame. For validation purposes, most GBT-based results are compared with values yielded by shell finite element analyses carried out in the code ANSYS.


2006 ◽  
Vol 33 (4) ◽  
pp. 421-439 ◽  
Author(s):  
R Emre Erkmen ◽  
Magdi Mohareb

Conventional solutions for the equations of equilibrium based on the well-known Vlasov thin-walled beam theory uncouple the equations by adopting orthogonal coordinate systems. Although this technique considerably simplifies the resulting field equations, it introduces several modelling complications and limitations. As a result, in the analysis of problems where eccentric supports or abrupt cross-sectional changes exist (in elements with rectangular holes, coped flanges, or longitudinal stiffened members, etc.), the Vlasov theory has been avoided in favour of a shell finite element that offer modelling flexibility at higher computational cost. In this paper, a general solution of the Vlasov thin-walled beam theory based on a nonorthogonal coordinate system is developed. The field equations are then exactly solved and the resulting displacement field expressions are used to formulate a finite element. Two additional finite elements are subsequently derived to cover the special cases where (a) the St.Venant torsional stiffness is negligible and (b) the warping torsional stiffness is negligible. Key words: open sections, warping effect, finite element,thin-walled beams, asymmetric sections.


2019 ◽  
Author(s):  
Miguel Abambres ◽  
Dinar Camotim ◽  
Nuno Silvestre

A formulation of the Generalised Beam Theory (GBT) is presented for the 1st order inelastic analysis of thin-walled steel bars subjected to arbitrary loading and boundary conditions. Five illustrative examples are shown to validate the theory for cases involving global deformation only, namely uniform bending, non-uniform bending, combined bending and axial compression, and non-uniform torsion. Lastly, the results are validated against ABAQUS using beam and shell finite element models. The correlation is typically great concerning equilibrium paths, deformed configurations, and stress diagrams. In those cases where results do not compare so well, possible causes are pointed out.


2006 ◽  
Vol 33 (4) ◽  
pp. 440-450 ◽  
Author(s):  
R Emre Erkmen ◽  
Magdi Mohareb

In a companion paper (R.E. Erkmen and M. Mohareb. 2006. Canadian Journal of Civil Engineering, 33: 421–439.), three finite elements based on the Vlasov thin-walled beam theory were formulated using a nonorthogonal coordinate system. Although the associated derivations are more elaborate than in more conventional solutions based on orthogonal coordinates, the new elements offer more modelling capabilities and flexibility in modelling structural steel members, a feature that is illustrated in this paper. In this context, the current paper presents four details in steel construction that were conveniently modelled within the new solution scheme. The applications involve thin-walled members with coped flanges, rectangular holes reinforced with longitudinal stiffeners, and eccentric supports. Comparisons with established shell finite element models using ABAQUS suggest the validity of the new solution. Key words: open sections, finite element analysis, thin-walled members, coped flanges, rectangular holes, eccentric supports.


Sign in / Sign up

Export Citation Format

Share Document