scholarly journals Structural analysis of steel-concrete composite beam bridges utilizing the shear connection model

2021 ◽  
Vol 72 (7) ◽  
pp. 811-823
Author(s):  
Thang Phung Ba ◽  
Anh Lai Van

Shear connector (typically shear studs) plays a vital role as a transfer zone between steel and concrete in steel-concrete composite bridge girder. In the previous studies, the connection between steel beam and reinforced concrete slab were considered as continuous joint. However, in practice, this connection is discrete, which allows the slipping and peeling phenomenon between two layers (the influence of peeling is usually very small and could be ignored). To reflect this actual working mechanism, this study proposed a model of shear connection in the form of discrete points at the actual positions of studs for structural analysis. The model was simulated utilizing Timoshenko beam theory considering transverse shear effects. The numerical applications are carried out in order to compare two types of connections. The obtained results indicated that the proposed model properly reflected the actual performance of the structure and in some necessary cases, we should consider discrete connection for more accurate local results.

2017 ◽  
Vol 26 (3) ◽  
pp. 69-78 ◽  
Author(s):  
Paweł Helbrych ◽  
Maciej Major ◽  
Jacek Nawrot

Abstract The paper proposed a numerical model of a shear connection between a reinforced concrete slab and a steel shape. The connection was made using a top-hat profile. A method for conducting experimental research on shear connections in the composite structures was presented. Geometric dimensions and material parameters of the analysed model of connection, on which the experimental research was conducted, were noted. The results of the conducted experimental research were compared to the results of the numerical analysis performed using ANSYS software. displecement curves were analysed for both cases and any correlation between experimental and numerical results was noted.


2016 ◽  
Vol 23 (1) ◽  
pp. 105-112 ◽  
Author(s):  
Josef MACHACEK ◽  
Martin CHARVAT

Longitudinal shear flow in the connection of a bridge steel truss upper chord and a concrete bridge slab is studied both in elastic and plastic stages of loading up to the shear connection collapse. First the distribution of the shear flow with an increasing level of loading is shown as resulted from 3D MNA (materially nonlinear analysis) using ANSYS software package and a former experimental verification. Nevertheless, the flow peaks in elastic stages above truss nodes due to local transfer of forces are crucial for design of the shear connection in bridges. Therefore a simple approximate 2D elastic frame modelling was suggested for subsequent extensive parametric studies. The study covers various loadings including the design loading of bridges and demonstrates importance of rigidity of the shear connec­tion, rigidity of an upper steel truss chord and rigidity of a concrete deck. Temperature effects and a creep of concrete are also studied. The substantial part of the study deals also with concentration of shear connectors in the area of steel truss nodes and influence of the connector densification on distribution of the longitudinal shear along an interface of the steel truss chord and the concrete deck. Eurocode 4 approach and quest to find an optimum design of the shear connection in composite bridge trusses are discussed. Finally the resulting recommendations for a practical design are presented.


2020 ◽  
Vol 17 (3) ◽  
pp. 414-427
Author(s):  
V. A. Utkin ◽  
I. I. Gotovtsev

Introduction. The construction of bridges using timber materials is experiencing a real boom throughout the world .The USA is considered to be a leader, where 80% of the bridges are made of timber or materials based on it. In Russia timber bridge construction has been stagnating for the last 50 years, although there is a need for these bridges. Timber structures could solve many problems with Russian roads, especially in remote areas. Timber structures are widely considered to be outdated, so they cannot meet current requirements of load capacity and durability, also they are vulnerable to atmospheric influences, etc. But foreign experience proves the contrary. The article is devoted to the implementation of new plank-nailed spans that meet current requirements of load capacity, reliability and durability.Materials and methods. The authors suggest and describe a new span structure. The span consists of planktimber- nailed-dowel blocks and a reinforced concrete slab generating a composite action. Some special crested shear connectors are suggested as combining elements. The top part works as flexible shear connectors in a reinforced concrete slab. The bottom part works as dowels with steel joints and timbers structures. The investigation of the stress-strain state of the structure has been completed within “compound beam” theory.Results. The application of the cast-in-place reinforced concrete slab allows to protect supporting timber structures against atmospheric influences, dirt, cracking from the sun rays, radiation and provides at least 50-year durability. The timber preservation provides a specified service life. The application of suggested connection with composite action between a reinforced concrete slab and supporting timber structures increases effectiveness of the composite timber concrete structure compared to steel and reinforced concrete structures. Trans-Baikal territory, Irkutsk and Arkhangelsk Regions, Khabarovsk Territory, the Republics of Sakha (Yakutia), Buriatia, Karelia are in the greatest need of the timber concrete composite spans, because they have a lot of forest resources and old timber bridges that are still in service.


Author(s):  
Ralph Alan Dusseau

The results of a study funded by the U.S. Geological Survey as part of the National Earthquake Hazards Reduction Program are presented. The first objective of this study was the development of a database for all 211 highway bridges along I-55 in the New Madrid region of southeastern Missouri. Profiles for five key dimension parameters (which are stored in the database) were developed, and the results for concrete highway bridges are presented. The second objective was to perform field ambient vibration analyses on 25 typical highway bridge spans along the I-55 corridor to determine the fundamental vertical and lateral frequencies of the bridge spans measured. These 25 spans included six reinforced concrete slab spans and two reinforced concrete box-girder spans. The third objective was to use these bridge frequency results in conjunction with the dimension parameters stored in the database to develop empirical formulas for estimating bridge fundamental natural frequencies. These formulas were applied to all 211 Interstate highway bridges in southeastern Missouri. Profiles for both fundamental vertical and lateral frequencies were then developed, and the results for concrete highway bridges are presented.


2020 ◽  
Vol 7 (04) ◽  
Author(s):  
PRADEEP H K ◽  
JASMA BALASANGAMESHWARA ◽  
K RAJAN ◽  
PRABHUDEV JAGADEESH

Irrigation automation plays a vital role in agricultural water management system. An efficient automatic irrigation system is crucial to improve crop water productivity. Soil moisture based irrigation is an economical and efficient approach for automation of irrigation system. An experiment was conducted for irrigation automation based on the soil moisture content and crop growth stage. The experimental findings exhibited that, automatic irrigation system based on the proposed model triggers the water supply accurately based on the real-time soil moisture values.


2016 ◽  
Vol 691 ◽  
pp. 96-107
Author(s):  
Tomas J. Zivner ◽  
Rudolf B. Aroch ◽  
Michal M. Fabry

This paper deals with the slab concreting sequence and its influence on a composite steel and concrete continuous highway girder bridge. The bridge has a symmetrical composite two-girder structure with three spans of 60 m, 80 m, 60 m (i.e. a total length between abutments of 200.0 m). The horizontal alignment is straight. The top face of the deck is flat. The bridge is straight. The transverse cross-section of the slab is symmetrical with respect to the axis of the bridge. The total slab width is 12 m. The slab thickness varies from 0.4 m on main girders to 0.25 m at its free edges and 0.3075 m at its axis of symmetry. The center-to-center spacing between main girders is 7 m and the slab cantilever on either side is 2.5 m long. Every main girder has a constant depth of 2800 mm and the thicknesses of the upper and lower flanges are variable. The lower flange is 1200 mm wide whereas the upper flange is 1000 mm wide. The two main girders have transverse bracing at abutments and at internal supports and at regular intervals in every span. The material of concrete slab is C35/45 and of steel members S355. The on-site pouring of the concrete slab segments is performed by casting them in a selected order and is done after the launching of the steel two girder bridge. The paper presents several concreting sequences and their influence on the normal stresses and deflections of the composite bridge girder.


Sign in / Sign up

Export Citation Format

Share Document