Progressive collapse behaviors and mechanisms of 3D printed thin-walled composite structures under multi-conditional loading

2022 ◽  
Vol 171 ◽  
pp. 108810
Author(s):  
Jin Wang ◽  
Yisen Liu ◽  
Kui Wang ◽  
Song Yao ◽  
Yong Peng ◽  
...  
2021 ◽  
Vol 217 ◽  
pp. 108865
Author(s):  
U. Morales ◽  
A. Esnaola ◽  
M. Iragi ◽  
L. Aretxabaleta ◽  
J. Aurrekoetxea
Keyword(s):  

2013 ◽  
Vol 95 ◽  
pp. 53-62 ◽  
Author(s):  
Diego Cárdenas ◽  
Hugo Elizalde ◽  
Piergiovanni Marzocca ◽  
Frank Abdi ◽  
Levon Minnetyan ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 499
Author(s):  
Olaf Dudek ◽  
Wojciech Klein ◽  
Damian Gąsiorek ◽  
Mariusz Pawlak

3D printing of a composite structure with shape memory materials requires a special approach to the subject, at the stage of the design and printing process. This paper presents the design steps during the development of a 3D-printed composite structure with shape memory material. The connection points between the SMA fibers and the printer filament are developed in the MATLAB environment. Finite element method is used to simulate the shortening of the shape memory material under the influence of temperature and its effect on the printed polymer material is presented. In the MATLAB environment, evolutionary algorithms were used to determine the shape of the SMA fiber alignment. This work demonstrates the use of shape memory effect in 3D printed smart composite structures, where the component takes a predetermined shape. The structure obtained as a result of such printing changes with the heat generated by the current voltage, making it the desired fourth dimension.


Author(s):  
Hua Wang ◽  
Jun Liu

Tolerance simulation’s reliability depends on the concordance between the input probability distribution and the practical situation. Pre-loading induced changes in the probability distribution should be considered in the structure’s tolerance simulation, especially for composite structures. The paper presents a tolerance simulation method for the thin-walled C-section composite beam (TC2B) assembling under preloading, that is prescribed clamping force. Based on FEA model of TC2B, the preloading-modified probability distribution function of the R angle spring-in deviation is proposed. Thickness variations of the TC2B are obtained from the data of the downscaled composite wingbox. These parts’ variations are input to the tolerance simulation software, and the final assembly variations are obtained. The assembly of the downscaled wingbox illustrates the effect of preloading on the probability distribution of the R angle spring-in deviation. The results have shown that tolerance simulation with the modified probability distribution is more accurate than the initial normal distribution. The tolerance simulation work presented in the paper will enhance the understanding of the composite parts assembling with spring-in deviations, and help systematically improving the precision control efficiency in civil aircraft industry.


Sign in / Sign up

Export Citation Format

Share Document