The studies on wet chemical etching via in situ liquid cell TEM

2021 ◽  
pp. 113271
Author(s):  
Mei Sun ◽  
Jiamin Tian ◽  
Qing Chen
Author(s):  
Albert Grau-Carbonell ◽  
Sina Sadighikia ◽  
Tom A. J. Welling ◽  
Relinde J. A. van Dijk-Moes ◽  
Ramakrishna Kotni ◽  
...  

2012 ◽  
Vol 49 (2) ◽  
pp. 45-50
Author(s):  
O. Shiman ◽  
V. Gerbreders ◽  
E. Sledevskis ◽  
A. Bulanovs

Selective Wet-Etching of Amorphous/Crystallized Sb-Se Thin Films The paper is focused on the development of an in situ real-time method for studying the process of wet chemical etching of thin films. The results of studies demonstrate the adequate etching selectivity for all thin film SbxSe100-x (x = 0, 20, 40, 50, 100) compositions under consideration. Different etching rates for the as-deposited and laser exposed areas were found to depend on the sample composition. The highest achieved etching rate was 1.8 nm/s for Sb40Se60 samples.


Author(s):  
Dongmei Meng ◽  
Joe Rupley ◽  
Chris McMahon

Abstract This paper presents decapsulation solutions for devices bonded with Cu wire. By removing mold compound to a thin layer using a laser ablation tool, Cu wire bonded packages are decapsulated using wet chemical etching by controlling the etch time and temperature. Further, the paper investigates the possibilities of decapsulating Cu wire bonded devices using full wet chemical etches without the facilitation of laser ablation removing much of mold compound. Additional discussion on reliability concerns when evaluating Cu wirebond devices is addressed here. The lack of understanding of the reliability of Cu wire bonded packages creates a challenge to the FA engineer as they must develop techniques to help understanding the reliability issue associated with Cu wire bonding devices. More research and analysis are ongoing to develop appropriate analysis methods and techniques to support the Cu wire bonding device technology in the lab.


Small ◽  
2020 ◽  
Vol 16 (51) ◽  
pp. 2007045
Author(s):  
Mei Sun ◽  
Bocheng Yu ◽  
Mengyu Hong ◽  
Zhiwei Li ◽  
Fengjiao Lyu ◽  
...  

2015 ◽  
Vol 48 (36) ◽  
pp. 365303 ◽  
Author(s):  
Jingchang Sun ◽  
Ting Zhao ◽  
Zhangwei Ma ◽  
Ming Li ◽  
Cheng Chang ◽  
...  

2007 ◽  
Vol 62 (11) ◽  
pp. 1411-1421 ◽  
Author(s):  
Sebastian Patzig ◽  
Gerhard Roewer ◽  
Edwin Kroke ◽  
Ingo över

Solutions consisting of HF - NOHSO4 - H2SO4 exhibit a strong reactivity towards crystalline silicon which is controlled by the concentrations of the reactive species HF and NO+. Selective isotropic and anisotropic wet chemical etching with these solutions allows to generate a wide range of silicon surface morphology patterns. Traces of Ag+ ions stimulate the reactivity and lead to the formation of planarized (polished) silicon surfaces. Analyses of the silicon surface, the etching solution and the gas phase were performed with scanning electron microscopy (SEM), DR/FT-IR (diffusive reflection Fourier transform infra-red), FT-IR, Raman and NMR spectroscopy, respectively. It was found that the resulting silicon surface is hydrogen-terminated. The gas phase contains predominantly SiF4, NO and N2O. Furthermore, NH4+ is produced in solution. The study has confirmed the crucial role of nitrosyl ions for isotropic wet chemical etching processes. The novel etching system is proposed as an effective new way for selective surface texturing of multi- and monocrystalline silicon. A high etching bath service lifetime, besides a low contamination of the etching solution with reaction products, provides ecological and economical advantages for the semiconductor and solar industry.


1990 ◽  
Vol 57 (12) ◽  
pp. 1212-1214 ◽  
Author(s):  
T. Katoh ◽  
Y. Nagamune ◽  
G. P. Li ◽  
S. Fukatsu ◽  
Y. Shiraki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document