Effect of porosity on the statistical amplitude distribution of backscattered ultrasonic pulses in particulate reinforced metal-matrix composites

Ultrasonics ◽  
2020 ◽  
Vol 108 ◽  
pp. 106235 ◽  
Author(s):  
N.B. Podymova ◽  
I.E. Kalashnikov ◽  
L.K. Bolotova ◽  
L.I. Kobeleva
2021 ◽  
Vol 87 (5) ◽  
pp. 34-42
Author(s):  
N. B. Podymova ◽  
I. E. Kalashnikov ◽  
L. I. Kobeleva

One of the most critical manufacturing defects of cast metal-matrix composites is a non-uniform porosity distribution over the composite volume. Unevenness of the distribution leads not only to local softening, but also plays a key role in the evolution of the damage process under the external loads. The goal of the study is to apply a new laser-ultrasonic method to in-situ study of a local porosity in reactive cast aluminum-matrix composites. The proposed method is based on statistical analysis of the amplitude distribution of backscattered broadband pulses of longitudinal ultrasonic waves in the studied materials. Laser excitation and piezoelectric detection of ultrasound were carried out using a laser-ultrasonic transducer. Two series of reactive cast aluminum-matrix composites were analyzed: reinforced by in situ synthesized Al3Ti intermetallic particles in different volume concentrations and by Al3Ti added with synthetic diamond nanoparticles. It is shown that for both series of the composites, the amplitude distribution of backscattered ultrasonic pulses is approximated by the Gaussian probability distribution applicable for statistics of large number of independent random variables. The empirical dependence of the half-width of this distribution on the local porosity in composites of two series is approximated by the same nearly linear function regardless of the size and fraction of reinforcing particles. This function was used to derive the formula for calculation of the local porosity in the studied composites. The developed technique seems to be promising in revealing potentially dangerous domains with high porosity in reactive-cast metal-matrix composites.


2005 ◽  
Vol 475-479 ◽  
pp. 3335-3338
Author(s):  
F. Alhama ◽  
Diego Alcaraz ◽  
S. Gómez-Lopera

A simple model based on the network simulation method is proposed to estimate numerically the thermal conductivity of particulate reinforced metal-matrix composites. The estimation is carried out running the model in the standard Pspice code, the computing time being negligible. The 3-D solid is discretized in 1000 cubic volume elements which represent an acceptable approximation of the shape of the particles. For each reinforcement percentage and each combination of matrix and reinforcement more than 200 tests were carried out, so that the results may be considered close to the exact values. The limit values are scarcely influenced by the effect of the 3-D geometry and basically depend on the amount of the reinforcement. Applications to aluminum and titanium matrix composites reinforced with different types of particles are presented covering a wide range of reinforcement percentages.


Sign in / Sign up

Export Citation Format

Share Document