scholarly journals Synergism of sweeping frequency ultrasound and deep eutectic solvents pretreatment for fractionation of sugarcane bagasse and enhancing enzymatic hydrolysis

2021 ◽  
Vol 73 ◽  
pp. 105470
Author(s):  
Qinghua Ji ◽  
Xiaojie Yu ◽  
Abu El-Gasim A. Yagoub ◽  
Li Chen ◽  
Olugbenga Abiola Fakayode ◽  
...  
2021 ◽  
Vol 291 ◽  
pp. 125972
Author(s):  
Shuai Zhao ◽  
Gui-Ling Zhang ◽  
Chen Chen ◽  
Qi Yang ◽  
Xue-Mei Luo ◽  
...  

Author(s):  
Leidy Patricia Quintero ◽  
Nathalia P. Q. de Souza ◽  
Adriane M. F. Milagres

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lin Dai ◽  
Tian Huang ◽  
Kankan Jiang ◽  
Xin Zhou ◽  
Yong Xu

Abstract Background Pretreatment is the key step for utilizing lignocellulosic biomass, which can extract cellulose from lignin and disrupt its recalcitrant crystalline structure to allow much more effective enzymatic hydrolysis; and organic acids pretreatment with dual benefic for generating xylooligosaccharides and boosting enzymatic hydrolysis has been widely used in adding values to lignocellulose materials. In this work, furoic acid, a novel recyclable organic acid as catalyst, was employed to pretreat sugarcane bagasse to recover the xylooligosaccharides fraction from hemicellulose and boost the subsequent cellulose saccharification. Results The FA-assisted hydrolysis of sugarcane bagasse using 3% furoic acid at 170 °C for 15 min resulted in the highest xylooligosaccharides yield of 45.6%; subsequently, 83.1 g/L of glucose was harvested by a fed-batch operation with a solid loading of 15%. Overall, a total of 120 g of xylooligosaccharides and 335 g glucose could be collected from 1000 g sugarcane bagasse starting from the furoic acid pretreatment. Furthermore, furoic acid can be easily recovered by cooling crystallization. Conclusion This work put forward a novel furoic acid pretreatment method to convert sugarcane bagasse into xylooligosaccharides and glucose, which provides a strategy that the sugar and nutraceutical industries can be used to reduce the production cost. The developed process showed that the yields of xylooligosaccharides and byproducts were controllable by shortening the reaction time; meanwhile, the recyclability of furoic acid also can potentially reduce the pretreatment cost and potentially replace the traditional mineral acids pretreatment.


2013 ◽  
Vol 48 (12) ◽  
pp. 1942-1946 ◽  
Author(s):  
Li-Qun Jiang ◽  
Zhen Fang ◽  
Xing-Kang Li ◽  
Jia Luo ◽  
Suet-Pin Fan

2018 ◽  
Vol 249 ◽  
pp. 1058-1061 ◽  
Author(s):  
Jiaxing Xu ◽  
Jiming Xu ◽  
Sen Zhang ◽  
Jun Xia ◽  
Xiaoyan Liu ◽  
...  

2014 ◽  
Vol 82 ◽  
pp. 91-96 ◽  
Author(s):  
Jingbo Li ◽  
Kejing Wu ◽  
Wenjuan Xiao ◽  
Jinjin Zhang ◽  
Jianghai Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document