thermoascus aurantiacus
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 12)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Raphael Gabriel ◽  
Rebecca Mueller ◽  
Lena Floerl ◽  
Cynthia Hopson ◽  
Simon Harth ◽  
...  

Abstract Background Filamentous fungi are excellent lignocellulose degraders, which they achieve through producing carbohydrate active enzymes (CAZymes). CAZyme production is highly orchestrated and gene expression analysis has greatly expanded understanding of this important biotechnological process. The thermophilic fungus Thermoascus aurantiacus secretes highly active thermostable enzymes that enable saccharifications at higher temperatures; however, the genome-wide measurements of gene expression in response to CAZyme induction are not understood. Results A fed-batch system with plant biomass-derived sugars d-xylose, l-arabinose and cellobiose established that these sugars induce CAZyme expression in T. aurantiacus. The C5 sugars induced both cellulases and hemicellulases, while cellobiose specifically induced cellulases. A minimal medium formulation was developed to enable gene expression studies of T. aurantiacus with these inducers. It was found that d-xylose and l-arabinose strongly induced a wide variety of CAZymes, auxiliary activity (AA) enzymes and carbohydrate esterases (CEs), while cellobiose facilitated lower expression of mostly cellulase genes. Furthermore, putative orthologues of different unfolded protein response genes were up-regulated during the C5 sugar feeding together with genes in the C5 sugar assimilation pathways. Conclusion This work has identified two additional CAZyme inducers for T. aurantiacus, l-arabinose and cellobiose, along with d-xylose. A combination of biochemical assays and RNA-seq measurements established that C5 sugars induce a suite of cellulases and hemicellulases, providing paths to produce broad spectrum thermotolerant enzymatic mixtures.


2021 ◽  
Author(s):  
Raphael Gabriel ◽  
Rebecca Mueller ◽  
Lena Floerl ◽  
Cynthia Hopson ◽  
Simon Harth ◽  
...  

Abstract Background: Filamentous fungi are excellent lignocellulose degraders, which they achieve through producing carbohydrate active enzymes (CAZymes). CAZyme production is highly orchestrated and the application of –omics methods such as RNA-Seq has greatly expanded understanding of this important biotechnological process. The thermophilic fungus Thermoascus aurantiacus secretes high amounts of highly active thermostable enzymes that enable saccharifications at higher temperatures; however, the genome-wide response to CAZyme induction is not understood. Results: A fed-batch system with plant biomass-derived sugars D-xylose, L-arabinose and cellobiose established that these sugars induce CAZyme expression in T. aurantiacus. The C5 sugars induced both cellulases and hemicellulases, while cellobiose specifically induced cellulases. A minimal medium formulation was developed to enable RNA-seq studies of T. aurantiacus with these inducers. It was found that D-xylose and L-arabinose strongly induced a wide variety of CAZymes, auxiliary activity (AA) enzymes and carbohydrate esterases (CEs), while cellobiose facilitated lower expression of mostly cellulase genes. Furthermore, putative orthologues of different unfolded protein response genes were up-regulated during the C5 sugar feeding together with genes in the C5 sugar assimilation pathways. Conclusion: This work has identified two additional CAZyme inducers for T. aurantiacus, L-arabinose and cellobiose, along with D-xylose. A combination of biochemical assays and RNA-seq measurements established that C5 sugars induce a suite of cellulases and hemicellulases, providing a path to produce a broad spectrum thermotolerant enzymatic mixture for deconstruction of plant biomass.


2021 ◽  
Vol 7 (4) ◽  
pp. 286
Author(s):  
Keerati Tanruean ◽  
Watsana Penkhrue ◽  
Jaturong Kumla ◽  
Nakarin Suwannarach ◽  
Saisamorn Lumyong

Agricultural wastes are lignocellulosic biomasses that contain high mineral and nutrient contents. This waste can be used as a raw material in industrial enzyme production by microbial fermentation. Phytase is an important enzyme used in animal feed to enhance the amount of phosphorus available for the growth and overall health improvement of monogastric animals. Fungi offer high potential as an effective source in the production of various extracellular enzymes. In this study, the production of lignocellulolytic enzymes (endoglucanase and xylanase) and phytase by a thermophilic fungus, namely Thermoascus aurantiacus strain SL16W, was evaluated using sixteen different Thai agricultural forms of waste under conditions of high temperature (45 °C). Semi-solid state fermentation was used in the production experiments. The results of this study reveal that the highest phytase activity (58.6 U/g substrate) was found in rice bran, whereas the highest degrees of activity of endoglucanase and xylanase were observed in wheat bran and red tea leaves at 19 and 162 U/g substrate, respectively. Consequently, the optimal conditions for phytase production of this fungus using rice bran were investigated. The results indicate that the highest phytase yield (58.6 to 84.1 U/g substrate) was observed in rice bran containing 0.5% ammonium sulfate as a nitrogen source with 10 discs of inoculum size at a cultivation period of 9 days at 45 °C and moisture content of 95%. Notably, the phytase yield increased by 1.71-fold, while endoglucanase and xylanase were also increased by 1.69- and 1.12-fold, respectively. Furthermore, the crude enzyme obtained from the optimal condition was extracted. The crude enzyme extract was then separately added to red tea leaves, rice straw, corncobs, palm residue, and peanut husks. Subsequently, total reducing sugar and phosphorus contents were determined. The results indicate that the highest level of reducing sugar (122.6 mg/L) and phosphorus content (452.6 mg/L) (p < 0.05) were obtained in palm residue at 36 and 48 h, respectively, after the addition of the crude enzyme extract. This study has provided valuable information on a potentially eco-friendly way to valorize agricultural waste into value-added products as industrial enzymes.


2020 ◽  
Vol 8 (6) ◽  
pp. 3237-3241
Author(s):  
Marwa O Elnahas ◽  
Waill A Elkhateeb ◽  
Ghoson M Daba

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Raphael Gabriel ◽  
Julia Prinz ◽  
Marina Jecmenica ◽  
Carlos Romero-Vazquez ◽  
Pallas Chou ◽  
...  

Abstract Background Fungal enzymes are vital for industrial biotechnology, including the conversion of plant biomass to biofuels and bio-based chemicals. In recent years, there is increasing interest in using enzymes from thermophilic fungi, which often have higher reaction rates and thermal tolerance compared to currently used fungal enzymes. The thermophilic filamentous fungus Thermoascus aurantiacus produces large amounts of highly thermostable plant cell wall-degrading enzymes. However, no genetic tools have yet been developed for this fungus, which prevents strain engineering efforts. The goal of this study was to develop strain engineering tools such as a transformation system, a CRISPR/Cas9 gene editing system and a sexual crossing protocol to improve the enzyme production. Results Here, we report Agrobacterium tumefaciens-mediated transformation (ATMT) of T. aurantiacus using the hph marker gene, conferring resistance to hygromycin B. The newly developed transformation protocol was optimized and used to integrate an expression cassette of the transcriptional xylanase regulator xlnR, which led to up to 500% increased xylanase activity. Furthermore, a CRISPR/Cas9 gene editing system was established in this fungus, and two different gRNAs were tested to delete the pyrG orthologue with 10% and 35% deletion efficiency, respectively. Lastly, a sexual crossing protocol was established using a hygromycin B- and a 5-fluoroorotic acid-resistant parent strain. Crossing and isolation of progeny on selective media were completed in a week. Conclusion The genetic tools developed for T. aurantiacus can now be used individually or in combination to further improve thermostable enzyme production by this fungus.


2020 ◽  
Vol 42 (10) ◽  
pp. 1897-1905
Author(s):  
Susanne Fritsche ◽  
Cynthia Hopson ◽  
Jennifer Gorman ◽  
Raphael Gabriel ◽  
Steven W. Singer

2020 ◽  
Author(s):  
Raphael Gabriel ◽  
Julia Prinz ◽  
Marina Jecmenica ◽  
Carlos Romero-Vazquez ◽  
Pallas Chou ◽  
...  

AbstractBackgroundFungal enzymes are vital for industrial biotechnology, including the conversion of plant biomass to biofuels and bio-based chemicals. In recent years, there is increasing interest in using enzymes from thermophilic fungi, which often have higher reaction rates and thermal tolerance compared to currently used fungal enzymes. The thermophilic filamentous fungus Thermoascus aurantiacus produces large amounts of highly thermostable plant cell wall degrading enzymes. However, no genetic tools have yet been developed for this fungus, which prevents strain engineering efforts. The goal of this study was to develop strain engineering tools such as a transformation system, a CRISPR/Cas9 gene editing system and a sexual crossing protocol to improve enzyme production.ResultsHere we report Agrobacterium tumefaciens-mediated transformation (ATMT) of T. aurantiacus using the hph marker gene, conferring resistance to hygromycin B. The newly developed transformation protocol was optimized and used to integrate an expression cassette of the transcriptional xylanase regulator xlnR, which led to up to 500% increased xylanase activity. Furthermore, a CRISPR/Cas9 gene editing system was established in this fungus, and two different gRNAs were tested to delete the pyrG orthologue with 10% and 35% deletion efficiency, respectively. Lastly, a sexual crossing protocol was established using a hygromycin B- and a 5-fluororotic acid-resistant parent strain. Crossing and isolation of progeny on selective media was completed in a week.ConclusionThe genetic tools developed for T. aurantiacus can now be used individually or in combination to further improve thermostable enzyme production by this fungus.


Author(s):  
Priscila Aparecida Casciatori Frassatto ◽  
Fernanda Perpétua Casciatori ◽  
João Cláudio Thoméo ◽  
Eleni Gomes ◽  
Maurício Boscolo ◽  
...  

2019 ◽  
Vol 51 (1) ◽  
pp. 107-123 ◽  
Author(s):  
Izat Smekenov ◽  
Marzhan Bakhtambayeva ◽  
Kudaybergen Bissenbayev ◽  
Murat Saparbayev ◽  
Sabira Taipakova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document