A combination of mild chemical pre-treatment and enzymatic hydrolysis efficiently produces xylooligosaccharides from sugarcane bagasse

2021 ◽  
Vol 291 ◽  
pp. 125972
Author(s):  
Shuai Zhao ◽  
Gui-Ling Zhang ◽  
Chen Chen ◽  
Qi Yang ◽  
Xue-Mei Luo ◽  
...  
Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 782
Author(s):  
Karina Juhnevica-Radenkova ◽  
Jorens Kviesis ◽  
Diego A. Moreno ◽  
Dalija Seglina ◽  
Fernando Vallejo ◽  
...  

Historically Triticum aestívum L. and Secale cereále L. are widely used in the production of bakery products. From the total volume of grain cultivated, roughly 85% is used for the manufacturing of flour, while the remaining part is discarded or utilized rather inefficiently. The limited value attached to bran is associated with their structural complexity, i.e., the presence of cellulose, hemicellulose, and lignin, which makes this material suitable mostly as a feed supplement, while in food production its use presents a challenge. To valorize these materials to food and pharmaceutical applications, additional pre-treatment is required. In the present study, an effective, sustainable, and eco-friendly approach to ferulic acid (FA) production was demonstrated through the biorefining process accomplished by non-starch polysaccharides degrading enzymes. Up to 11.3 and 8.6 g kg−1 of FA was released from rye and wheat bran upon 24 h enzymatic hydrolysis with multi-enzyme complex Viscozyme® L, respectively.


Author(s):  
Leidy Patricia Quintero ◽  
Nathalia P. Q. de Souza ◽  
Adriane M. F. Milagres

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lin Dai ◽  
Tian Huang ◽  
Kankan Jiang ◽  
Xin Zhou ◽  
Yong Xu

Abstract Background Pretreatment is the key step for utilizing lignocellulosic biomass, which can extract cellulose from lignin and disrupt its recalcitrant crystalline structure to allow much more effective enzymatic hydrolysis; and organic acids pretreatment with dual benefic for generating xylooligosaccharides and boosting enzymatic hydrolysis has been widely used in adding values to lignocellulose materials. In this work, furoic acid, a novel recyclable organic acid as catalyst, was employed to pretreat sugarcane bagasse to recover the xylooligosaccharides fraction from hemicellulose and boost the subsequent cellulose saccharification. Results The FA-assisted hydrolysis of sugarcane bagasse using 3% furoic acid at 170 °C for 15 min resulted in the highest xylooligosaccharides yield of 45.6%; subsequently, 83.1 g/L of glucose was harvested by a fed-batch operation with a solid loading of 15%. Overall, a total of 120 g of xylooligosaccharides and 335 g glucose could be collected from 1000 g sugarcane bagasse starting from the furoic acid pretreatment. Furthermore, furoic acid can be easily recovered by cooling crystallization. Conclusion This work put forward a novel furoic acid pretreatment method to convert sugarcane bagasse into xylooligosaccharides and glucose, which provides a strategy that the sugar and nutraceutical industries can be used to reduce the production cost. The developed process showed that the yields of xylooligosaccharides and byproducts were controllable by shortening the reaction time; meanwhile, the recyclability of furoic acid also can potentially reduce the pretreatment cost and potentially replace the traditional mineral acids pretreatment.


2013 ◽  
Vol 48 (12) ◽  
pp. 1942-1946 ◽  
Author(s):  
Li-Qun Jiang ◽  
Zhen Fang ◽  
Xing-Kang Li ◽  
Jia Luo ◽  
Suet-Pin Fan

2021 ◽  
Vol 73 ◽  
pp. 105470
Author(s):  
Qinghua Ji ◽  
Xiaojie Yu ◽  
Abu El-Gasim A. Yagoub ◽  
Li Chen ◽  
Olugbenga Abiola Fakayode ◽  
...  

2018 ◽  
Vol 249 ◽  
pp. 1058-1061 ◽  
Author(s):  
Jiaxing Xu ◽  
Jiming Xu ◽  
Sen Zhang ◽  
Jun Xia ◽  
Xiaoyan Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document