scholarly journals Study of double-using ultrasonic effects on the structure of PbO nanorods fabricated by the sonochemical method

2021 ◽  
Vol 79 ◽  
pp. 105797
Author(s):  
Sepideh Yazdani-Darki ◽  
Mohammad Eslami-Kalantari ◽  
Hakimeh Zare
Keyword(s):  

In this paper, easy, rapid and cheap synthetic method was described for florfenicol-silver nanocomposite by sonochemical method. Florfenicol-silver nanocomposite was characterized based on three classes namely index, identification and morphology class. Index characterization was carried out by zeta sizing, BET surface area and zeta potential. Identification characterization was performed using X-ray diffraction (XRD) and Raman spectrometry. Morphology characterization was done utilizing transmission electron microscope (TEM), scanning electron microscope (SEM) and atomic force microscope (AFM). Characterization results showed zeta sizing of florfenicol was 30.44nm, while florfenicol-silver nanocomposite was 33.5 nm with zeta potential -14.1 and -18, respectively. BET surface area was found to be 13.3, 73.2 and 103.69 m2/g for florfenicol, silver nanoparticles and florfenicol-silver nanocomposite respectively. XRD and Raman charts confirmed the formation of florfenicol-silver nanocomposite without any contamination. TEM, SEM and AFM spectral data illustrated spherical to sub spherical shape of silver nanoparticles on cubic to sheet shape of florfenicol with size less than 50 nm. Antimicrobial activity was screened where the average zone of inhibitions caused by the prepared nanocomposite were 28.3 mm, 24 mm, 27.3 mm and 24 mm compared to 17.7 mm, 16 mm, 18.7 mm and 13.3 mm of the native drug and 13 mm, 10 mm, 14.3 mm and 15 mm of the used positive reference standards against E. coli, Salmonella typhymurium, Staphylococcus aureus and Staph.aureus MRSA respectively.


2018 ◽  
Vol 15 (2) ◽  
pp. 209-213 ◽  
Author(s):  
Sathish Mohan Botsa ◽  
Ramadevi Dharmasoth ◽  
Keloth Basavaiah

Background: During past two decades, functional nanomaterials have received great attention for many technological applications such as catalysis, energy, environment, medical and sensor due to their unique properties at nanoscale. However, copper oxide nanoparticles (NPs) such as CuO and Cu2O have most widely investigated for many potential applications due to their wide bandgap, high TC, high optical absorption and non-toxic in nature. The physical and chemical properties of CuO and Cu2O NPs are critically depending on their size, morphology and phase purity. Therefore, lots of efforts have been done to prepare phase CuO and Cu2O NPs with different morphology and size. Method: The synthesis of cupric oxide (CuO) and cuprous oxide (Cu2O) NPs using copper acetate as a precursor by varying the reducing agents such as hydrazine sulphate and hydrazine hydrate via sonochemical method. The phase, morphology and crystalline structure of a prepared CuO and Cu2O NPs were investigated by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray (EDS) and UV-Visible Diffuse reflectance spectroscopy (DRS). Results: The phase of NPs was tuned as a function of reducing agents.XRD patterns confirmed the formation of pure phase crystalline CuO and Cu2O NPs. FTIR peak at 621 cm-1 confirmed Cu(I)-O vibrations, while CuO vibrations confirmed by the presence of two peaks at 536 and 586 cm-1. Further investigation was done by Raman, which clearly indicates the presence of peaks at 290, 336, 302 cm-1 and 173, 241 cm-1 for CuO and Cu2O NPs, respectively. The FESEM images revealed rod-like morphology of the CuO NPs while octahedral like shape for Cu2O NPs. The presence of elemental Cu and O in stoichiometric ratios in EDS spectra confirms the formation of both CuO and Cu2O NPs. In summary, CuO and Cu2O NPs were successfully synthesized by a sonochemical method using copper acetate as a precursor at different reducing agents. The bandgap of CuO and Cu2O NPs was 2.38 and 1.82, respectively. Furthermore, the phase purity critically depends on reducing agents.


2004 ◽  
Vol 269 (2-4) ◽  
pp. 317-323 ◽  
Author(s):  
H. Song ◽  
K. Cho ◽  
H. Kim ◽  
J.S. Lee ◽  
B. Min ◽  
...  

Langmuir ◽  
2007 ◽  
Vol 23 (20) ◽  
pp. 10342-10347 ◽  
Author(s):  
Christopher E. Bunker ◽  
Kyle C. Novak ◽  
Elena A. Guliants ◽  
Barbara A. Harruff ◽  
M. Jaouad Meziani ◽  
...  

2013 ◽  
Vol 56 (7) ◽  
pp. 1280-1284 ◽  
Author(s):  
Bin Gao ◽  
YueTao Yang ◽  
Hao Yang ◽  
ShuYi Zhang ◽  
XiaoJun Liu

2016 ◽  
Vol 90 (5) ◽  
pp. 949-954 ◽  
Author(s):  
Anukorn Phuruangrat ◽  
Oranuch Yayapao ◽  
Somchai Thongtem ◽  
Titipun Thongtem

2002 ◽  
Vol 55 (4) ◽  
pp. 253-258 ◽  
Author(s):  
Hui Wang ◽  
Jian-Rong Zhang ◽  
Xiao-Ning Zhao ◽  
Shu Xu ◽  
Jun-Jie Zhu
Keyword(s):  

2017 ◽  
Vol 17 (2) ◽  
pp. 301
Author(s):  
Yehezkiel Steven Kurniawan ◽  
Yudha Ramanda ◽  
Kevin Thomas ◽  
Hendra Hendra ◽  
Tutik Dwi Wahyuningsih

Two 1,4-dioxaspiro novel compounds which derivated from methyl 9,10-dihydroxyoctadecanoate (MDHO) with cyclopentanone and cyclohexanone had been synthesized by a sonochemical method in the presence of montmorillonite KSF catalyst. The MDHO compound had been prepared from 9,10-dihydroxyoctadecanoic acid (DHOA) and methanol. Meanwhile, DHOA was synthesized by hydroxylation of oleic acid with the solution of 1% KMnO4 under basic condition. The structures of the products were confirmed by FTIR, GC-MS, 1H-NMR, and 13C-NMR spectrometers. Hydroxylation reaction of oleic acid gave DHOA as a white solid powder in 46.52% yield (m.p. 131-132 °C). On the other side, esterification reaction via sonochemical method between DHOA and methanol gave MDHO as a white powder in 93.80% yield (m.p. 80-81 °C). The use of cyclopentanone in 45 min sonochemical method gave methyl 8-(3-octyl-1,4-dioxaspiro[4.4]nonan-2-yl)octanoate as a yellow viscous liquid in 50.51% yield. The other compound, methyl 8-(3-octyl-1,4-dioxaspiro[4.5]decan-2-yl)octanoate as yellow viscous liquid had been synthesized by similar method with cyclohexanone via the sonochemical method in 45.12% yield. From physicochemical properties, i.e. density, total acid number, total base number, and iodine value, gave the conclusion that these novel compounds are potential biolubricant candidates to be developed.


Sign in / Sign up

Export Citation Format

Share Document