Susceptibility of various mouse strains to systemically- or aerosol-initiated tularemia by virulent type A Francisella tularensis before and after immunization with the attenuated live vaccine strain of the pathogen

Vaccine ◽  
2004 ◽  
Vol 22 (17-18) ◽  
pp. 2116-2121 ◽  
Author(s):  
Hua Shen ◽  
Wangxue Chen ◽  
J.Wayne Conlan
2010 ◽  
Vol 78 (10) ◽  
pp. 4341-4355 ◽  
Author(s):  
Qingmei Jia ◽  
Bai-Yu Lee ◽  
Richard Bowen ◽  
Barbara Jane Dillon ◽  
Susan M. Som ◽  
...  

ABSTRACT Francisella tularensis, the causative agent of tularemia, is in the top category (category A) of potential agents of bioterrorism. The F. tularensis live vaccine strain (LVS) is the only vaccine currently available to protect against tularemia; however, this unlicensed vaccine is relatively toxic and provides incomplete protection against aerosolized F. tularensis, the most dangerous mode of transmission. Hence, a safer and more potent vaccine is needed. As a first step toward addressing this need, we have constructed and characterized an attenuated version of LVS, LVS ΔcapB, both as a safer vaccine and as a vector for the expression of recombinant F. tularensis proteins. LVS ΔcapB, with a targeted deletion in a putative capsule synthesis gene (capB), is antibiotic resistance marker free. LVS ΔcapB retains the immunoprotective O antigen, is serum resistant, and is outgrown by parental LVS in human macrophage-like THP-1 cells in a competition assay. LVS ΔcapB is significantly attenuated in mice; the 50% lethal dose (LD50) intranasally (i.n.) is >10,000-fold that of LVS. Providing CapB in trans to LVS ΔcapB partially restores its virulence in mice. Mice immunized with LVS ΔcapB i.n. or intradermally (i.d.) developed humoral and cellular immune responses comparable to those of mice immunized with LVS, and when challenged 4 or 8 weeks later with a lethal dose of LVS i.n., they were 100% protected from illness and death and had significantly lower levels (3 to 5 logs) of LVS in the lung, liver, and spleen than sham-immunized mice. Most importantly, mice immunized with LVS ΔcapB i.n. or i.d. and then challenged 6 weeks later by aerosol with 10× the LD50 of the highly virulent type A F. tularensis strain SchuS4 were significantly protected (100% survival after i.n. immunization). These results show that LVS ΔcapB is significantly safer than LVS and yet provides potent protective immunity against virulent F. tularensis SchuS4 challenge.


2013 ◽  
Vol 81 (9) ◽  
pp. 3099-3105 ◽  
Author(s):  
Jerod A. Skyberg ◽  
MaryClare F. Rollins ◽  
Joshua W. Samuel ◽  
Marjorie D. Sutherland ◽  
John T. Belisle ◽  
...  

ABSTRACTFrancisella tularensisis a highly infectious intracellular bacterium that causes the zoonotic infection tularemia. While much literature exists on the host response toF. tularensisinfection, the vast majority of work has been conducted using attenuated strains ofFrancisellathat do not cause disease in humans. However, emerging data indicate that the protective immune response against attenuatedF. tularensisversusF. tularensistype A differs. Several groups have recently reported that interleukin-17 (IL-17) confers protection against the live vaccine strain (LVS) ofFrancisella. While we too have found that IL-17Rα−/−mice are more susceptible toF. tularensisLVS infection, our studies, using a virulent type A strain ofF. tularensis(SchuS4), indicate that IL-17Rα−/−mice display organ burdens and pulmonary gamma interferon (IFN-γ) responses similar to those of wild-type mice following infection. In addition, oral LVS vaccination conferred equivalent protection against pulmonary challenge with SchuS4 in both IL-17Rα−/−and wild-type mice. While IFN-γ was found to be critically important for survival in a convalescent model of SchuS4 infection, IL-17 neutralization from either wild-type or IFN-γ−/−mice had no effect on morbidity or mortality in this model. IL-17 protein levels were also higher in the lungs of mice infected with the LVS rather thanF. tularensistype A, while IL-23p19 mRNA expression was found to be caspase-1 dependent in macrophages infected with LVS but not SchuS4. Collectively, these results demonstrate that IL-17 is dispensable for host immunity to type AF. tularensisinfection, and that induced and protective immunity differs between attenuated and virulent strains ofF. tularensis.


2014 ◽  
Vol 82 (5) ◽  
pp. 2068-2078 ◽  
Author(s):  
Christopher R. Doyle ◽  
Ji-An Pan ◽  
Patricio Mena ◽  
Wei-Xing Zong ◽  
David G. Thanassi

ABSTRACTFrancisella tularensisis a facultative intracellular, Gram-negative pathogen and the causative agent of tularemia. We previously identified TolC as a virulence factor of theF. tularensislive vaccine strain (LVS) and demonstrated that a ΔtolCmutant exhibits increased cytotoxicity toward host cells and elicits increased proinflammatory responses compared to those of the wild-type (WT) strain. TolC is the outer membrane channel component used by the type I secretion pathway to export toxins and other bacterial virulence factors. Here, we show that the LVS delays activation of the intrinsic apoptotic pathway in a TolC-dependent manner, both during infection of primary macrophages and during organ colonization in mice. The TolC-dependent delay in host cell death is required forF. tularensisto preserve its intracellular replicative niche. We demonstrate that TolC-mediated inhibition of apoptosis is an active process and not due to defects in the structural integrity of the ΔtolCmutant. These findings support a model wherein the immunomodulatory capacity ofF. tularensisrelies, at least in part, on TolC-secreted effectors. Finally, mice vaccinated with the ΔtolCLVS are protected from lethal challenge and clear challenge doses faster than WT-vaccinated mice, demonstrating that the altered host responses to primary infection with the ΔtolCmutant led to altered adaptive immune responses. Taken together, our data demonstrate that TolC is required for temporal modulation of host cell death during infection byF. tularensisand highlight how shifts in the magnitude and timing of host innate immune responses may lead to dramatic changes in the outcome of infection.


2005 ◽  
Vol 73 (4) ◽  
pp. 2306-2311 ◽  
Author(s):  
Nathalie S. Duckett ◽  
Sofia Olmos ◽  
Douglas M. Durrant ◽  
Dennis W. Metzger

ABSTRACT Francisella tularensis is a gram-negative intracellular bacterium that can induce lethal respiratory infection in humans and rodents. However, little is known about the role of innate or adaptive immunity in protection from respiratory tularemia. In the present study, the role of interleukin-12 (IL-12) in inducing protective immunity in the lungs against intranasal infection of mice with the live vaccine strain (LVS) of F. tularensis was investigated. It was found that gamma interferon (IFN-γ) and IL-12 were strictly required for protection, since mice deficient in IFN-γ, IL-12 p35, or IL-12 p40 all succumbed to LVS doses that were sublethal for wild-type mice. Furthermore, exogenous IL-12 treatment 24 h before intranasal infection with a lethal dose of LVS (10,000 CFU) significantly decreased bacterial loads in the lungs, livers, and spleens of wild-type BALB/c and C57BL/6 mice and allowed the animals to survive infection; such protection was not observed in IFN-γ-deficient mice. The resistance induced by IL-12 to LVS infection was still observed in NK cell-deficient beige mice but not in CD8−/− mice. These results demonstrate that exogenous IL-12 delivered intranasally can prevent respiratory tularemia through a mechanism that is at least partially dependent upon the expression of IFN-γ and CD8 T cells.


Sign in / Sign up

Export Citation Format

Share Document