Tracking epitope-specific antiviral CD4+ T cell responses to a live attenuated vaccine reveals ongoing functional responses

Vaccine ◽  
2009 ◽  
Vol 27 (52) ◽  
pp. 7398-7401 ◽  
Author(s):  
L. Jones ◽  
G. Malavige ◽  
K. Jeffery ◽  
E. Kemp ◽  
J. Breuer ◽  
...  
2020 ◽  
Vol 94 (10) ◽  
Author(s):  
Alba Grifoni ◽  
Hannah Voic ◽  
Sandeep Kumar Dhanda ◽  
Conner K. Kidd ◽  
James D. Brien ◽  
...  

ABSTRACT Members of the flavivirus genus share a high level of sequence similarity and often circulate in the same geographical regions. However, whether T cells induced by one viral species cross-react with other related flaviviruses has not been globally addressed. In this study, we tested pools of epitopes derived from dengue (DENV), Zika (ZIKV), Japanese encephalitis (JEV), West Nile (WNV), and yellow fever (YFV) viruses by intracellular cytokine staining (ICS) using peripheral blood mononuclear cells (PBMCs) of individuals naturally exposed to DENV or immunized with DENV (TV005) or YF17D vaccine. CD8 T cell responses recognized epitopes from multiple flaviviruses; however, the magnitude of cross-reactive responses was consistently severalfold lower than those to the autologous epitope pools and was associated with lower expression of activation markers such as CD40L, CD69, and CD137. Next, we characterized the antigen sensitivity of short-term T cell lines (TCL) representing 29 different individual epitope/donor combinations. TCL derived from DENV monovalent vaccinees induced CD8 and CD4 T cells that cross-reacted within the DENV serocomplex but were consistently associated with >100-fold-lower antigen sensitivity for most other flaviviruses, with no cross-recognition of YFV-derived peptides. CD8 and CD4 TCL from YF17D vaccinees were associated with very limited cross-reactivity with any other flaviviruses and in five out of eight cases >1,000-fold-lower antigen sensitivity. Overall, our data suggest limited cross-reactivity for both CD4 and CD8 T cell responses between flaviviruses and have implications for understanding immunity elicited by natural infection and strategies to develop live attenuated vaccines against flaviviral species. IMPORTANCE The envelope (E) protein is the dominant target of neutralizing antibodies for dengue virus (DENV) and yellow fever virus (YFV). Accordingly, several DENV vaccine constructs use the E protein in a live attenuated vaccine format, utilizing a backbone derived from a heterologous flavivirus (such as YF) as a delivery vector. This backbone comprises the nonstructural (NS) and capsid (C) antigens, which are dominant targets of T cell responses. Here, we demonstrate that cross-reactivity at the level of T cell responses among different flaviviruses is very limited, despite high levels of sequence homology. Thus, the use of heterologous flavivirus species as a live attenuated vaccine vector is not likely to generate optimal T cell responses and might thus impair vaccine performance.


2012 ◽  
Vol 86 (18) ◽  
pp. 9952-9963 ◽  
Author(s):  
Nicholas J. Moss ◽  
Amalia Magaret ◽  
Kerry J. Laing ◽  
Angela Shaulov Kask ◽  
Minna Wang ◽  
...  

Leukocytes participate in the immune control of herpes simplex virus (HSV). Data from HIV coinfections, germ line mutations, and case reports suggest involvement of CD4 T cells and plasmacytoid dendritic cells (pDC). We investigated the relationships between these cells and recurrent genital herpes disease severity in the general population. Circulating CD4 T-cell responses to HSV-2 were measured in specimens from 67 immunocompetent individuals with measured genital lesion and HSV shedding rates. Similarly, pDC number and functional responses to HSV-2 were analyzed in 40 persons. CD4 responses and pDC concentrations and responses ranged as much as 100-fold between persons while displaying moderate within-person consistency over time. No correlations were observed between these immune response parameters and genital HSV-2 severity. Cytomegalovirus (CMV) coinfection was not correlated with differences in HSV-2-specific CD4 T-cell responses. The CD4 T-cell response to HSV-2 was much more polyfunctional than was the response to CMV. These data suggest that other immune cell subsets with alternate phenotypes or anatomical locations may be responsible for genital herpes control in chronically infected individuals.


2020 ◽  
Author(s):  
Alba Grifoni ◽  
Hannah Voic ◽  
Sandeep Kumar Dhanda ◽  
Conner K. Kidd ◽  
James D Brien ◽  
...  

AbstractMembers of the flavivirus genus share a high level of sequence similarity and often circulate in the same geographical regions. However, whether T cells induced by one viral species cross-react with other related flaviviruses has not been globally addressed. Here, we tested pools of epitopes derived from dengue (DENV), zika (ZIKV), Japanese Encephalitis (JEV), West Nile (WNV), and yellow fever (YFV) viruses by Intracellular Cytokine Staining (ICS) using PBMCs of individuals naturally exposed to DENV or immunized with DENV (TV005) or YF17D vaccines. CD8 T cell responses recognized epitopes from multiple flaviviruses, however, the magnitude of cross-reactive responses was consistently several-fold lower than those to the autologous epitope pools, and associated with lower expression of activation markers such as CD40L, CD69, and CD137. Next, we characterized the antigen sensitivity of short-term T cell lines (TCL) representing twenty-nine different individual epitope/donor combinations. TCL derived from DENV monovalent vaccinees induced CD8 and CD4 T cells that cross-reacted within the DENV serocomplex but were consistently associated with more than 100-fold lower antigen sensitivity for most other flaviviruses, with no cross-recognition of YFV derived peptides. CD8 and CD4 TCL from YF17D vaccinees were associated with very limited cross-reactivity with any other flaviviruses, and in five out of eight cases more than 1000-fold lower antigen sensitivity. Overall, our data suggest limited cross-reactivity for both CD4 and CD8 T cell responses between flaviviruses and has implications for understanding immunity elicited by natural infection, and strategies to develop live attenuated vaccines against flaviviral species.ImportanceThe envelope (E) protein is the dominant target of neutralizing antibodies for dengue virus (DENV) and yellow fever virus (YFV). Accordingly, several DENV vaccine constructs use the E protein in a live attenuated vaccine format, utilizing a backbone derived from a heterologous flavivirus (such as YF) as a delivery vector. This backbone comprises the non-structural (NS) and capsid (C) antigens which are dominant targets of T cell responses. Here, we demonstrate that cross-reactivity at the level of T cell responses amongst different flaviviruses is very limited, despite high levels of sequence homology. Thus, the use of heterologous flavivirus species as a live attenuated vaccine vector is not likely to generate optimal T cell responses, and might thus impair vaccine performance.


Sign in / Sign up

Export Citation Format

Share Document