Quantification of different classical swine fever virus transmission routes within a single compartment

2014 ◽  
Vol 174 (3-4) ◽  
pp. 353-361 ◽  
Author(s):  
Eefke Weesendorp ◽  
Jantien Backer ◽  
Willie Loeffen
Vaccines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 464
Author(s):  
Yaneysis Lamothe-Reyes ◽  
José Alejandro Bohórquez ◽  
Miaomiao Wang ◽  
Mònica Alberch ◽  
Marta Pérez-Simó ◽  
...  

Classical swine fever virus (CSFV) remains a challenge for the porcine industry. Inefficient vaccination programs in some endemic areas may have contributed to the emergence of low and moderate virulence CSFV variants. This work aimed to expand and update the information about the safety and efficacy of the CSFV Thiverval-strain vaccine. Two groups of pigs were vaccinated, and a contact and control groups were also included. Animals were challenged with a highly virulent CSFV strain at 21- or 5-days post vaccination (dpv). The vaccine induced rapid and strong IFN-α response, mainly in the 5-day immunized group, and no vaccine virus transmission was detected. Vaccinated pigs showed humoral response against CSFV E2 and Erns glycoproteins, with neutralising activity, starting at 14 days post vaccination (dpv). Strong clinical protection was afforded in all the vaccinated pigs as early as 5 dpv. The vaccine controlled viral replication after challenge, showing efficient virological protection in the 21-day immunized pigs despite being housed with animals excreting high CSFV titres. These results demonstrate the high efficacy of the Thiverval strain against CSFV replication. Its early protection capacity makes it a useful alternative for emergency vaccination and a consistent tool for CSFV control worldwide.


2021 ◽  
Vol 255 ◽  
pp. 109034
Author(s):  
Liang Zhang ◽  
Mingxing Jin ◽  
Mengzhao Song ◽  
Shanchuan Liu ◽  
Tao Wang ◽  
...  

2021 ◽  
pp. 109128
Author(s):  
Tatsuya Nishi ◽  
Katsuhiko Fukai ◽  
Tomoko Kato ◽  
Kotaro Sawai ◽  
Takehisa Yamamoto

Vaccines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 418
Author(s):  
Youngmin Park ◽  
Yeonsu Oh ◽  
Miaomiao Wang ◽  
Llilianne Ganges ◽  
José Alejandro Bohórquez ◽  
...  

The efficacy of a novel subunit vaccine candidate, based in the CSFV E2 glycoprotein produced in plants to prevent classical swine fever virus (CSFV) vertical transmission, was evaluated. A Nicotiana benthamiana tissue culture system was used to obtain a stable production of the E2-glycoprotein fused to the porcine Fc region of IgG. Ten pregnant sows were divided into three groups: Groups 1 and 2 (four sows each) were vaccinated with either 100 μg/dose or 300 μg/dose of the subunit vaccine at 64 days of pregnancy. Group 3 (two sows) was injected with PBS. Groups 1 and 2 were boosted with the same vaccine dose. At 10 days post second vaccination, the sows in Groups 2 and 3 were challenged with a highly virulent CSFV strain. The vaccinated sows remained clinically healthy and seroconverted rapidly, showing efficient neutralizing antibodies. The fetuses from vaccinated sows did not show gross lesions, and all analyzed tissue samples tested negative for CSFV replication. However, fetuses of non-vaccinated sows had high CSFV replication in tested tissue samples. The results suggested that in vaccinated sows, the plant produced E2 marker vaccine induced the protective immunogenicity at challenge, leading to protection from vertical transmission to fetuses.


Virulence ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 130-149
Author(s):  
Erpeng Zhu ◽  
Huawei Wu ◽  
Wenxian Chen ◽  
Yuwei Qin ◽  
Jiameng Liu ◽  
...  

1997 ◽  
Vol 52 (2) ◽  
pp. 195-204 ◽  
Author(s):  
T Stadejek ◽  
Š Vilček ◽  
J.P Lowings ◽  
A Ballagi-Pordány ◽  
D.J Paton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document