genome variability
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 36)

H-INDEX

18
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Ching-Ting Huang ◽  
Shu-Ting Cho ◽  
Choon-Meng Tan ◽  
Yi-Ching Chiu ◽  
Jun-Yi Yang ◽  
...  

AbstractPhytoplasmas are insect-transmitted plant pathogens that cause substantial losses in agriculture. In addition to economic impact, phytoplasmas induce distinct disease symptoms in infected plants, thus attracting attention for research on molecular plant-microbe interactions and plant developmental processes. Due to the difficulty of establishing an axenic culture of these bacteria, culture-independent genome characterization is a crucial tool for phytoplasma research. However, phytoplasma genomes have strong nucleotide composition biases and are repetitive, which make it challenging to produce complete assemblies. In this study, we utilized Illumina and Oxford Nanopore sequencing technologies to obtain the complete genome sequence of ‘Candidatus Phytoplasma luffae’ strain NCHU2019 that is associated with witches’ broom disease of loofah (Luffa aegyptiaca) in Taiwan. The fully assembled circular chromosome is 769 kb in size and is the first representative genome sequence of group 16SrVIII phytoplasmas. Comparative analysis with other phytoplasmas revealed that NCHU2019 has an exceptionally repetitive genome, possessing a pair of 75 kb repeats and at least 13 potential mobile units (PMUs) that account for ∼25% of its chromosome. This level of genome repetitiveness is exceptional for bacteria, particularly among obligate pathogens with reduced genomes. Our genus-level analysis of PMUs demonstrated that these phytoplasma-specific mobile genetic elements can be classified into three major types that differ in gene organization and phylogenetic distribution. Notably, PMU abundance explains nearly 80% of the variance in phytoplasma genome sizes, a finding that provides a quantitative estimate for the importance of PMUs in phytoplasma genome variability. Finally, our investigation found that in addition to horizontal gene transfer, PMUs also contribute to intra-genomic duplications of effector genes, which may provide redundancy for neofunctionalization or subfunctionalization. Taken together, this work improves the taxon sampling for phytoplasma genome research and provides novel information regarding the roles of mobile genetic elements in phytoplasma evolution.


2021 ◽  
pp. 2142-2149
Author(s):  
Moataz Elsayed ◽  
AbdelSatar Arafa ◽  
Shahira Abdelwahab ◽  
Amro Hashish ◽  
Ahmed Youssef

Background and Aim: Poultry infections with H9N2 avian influenza viruses (AIVs) are endemic in Egypt. This study determined the genetic changes in the sequences of H9N2 AIVs isolated from chicken and quails in Egypt, including determining genetic reassortment and detecting the main genetic changes in hemagglutinin (HA) and neuraminidase (NA) genes. Materials and Methods: Swab samples were collected from chicken and quails, examined through reverse transcription-polymerase chain reaction, and AIVs from positive samples were isolated in embryonated chicken eggs. Complete genome sequencing and phylogenetic analyses were conducted for two H9N2 AIV isolates, and sequences of HA and NA gene segments were analyzed in another two isolates. Results: A novel reassortant virus was identified from a commercial chicken flock (A/chicken/Egypt/374V/2016) and quails from a live bird market (A/quail/Egypt/1253V/2016). The reassortant viruses acquired four genome segments from the classic Egyptian H9N2 viruses (HA, NA, NP, and M) and four segments from Eurasian AIVs (PB2, PB1, PA, and NS). Many genetic changes have been demonstrated in HA and NA genes. The isolated novel reassortant H9N2 virus from quails showed amino acid mutations in the antigenic sites on the globular head of the mature HA monomer matched with the parent Egyptian H9N2 virus. Conclusion: This work described the genetic characterization of a novel reassortment of the H9N2 virus in Egypt. The emergence of new reassorted AIV viruses and genome variability raises the concern of an influenza pandemic with zoonotic potentials.


2021 ◽  
Author(s):  
Benjamin Dauphin ◽  
Maira de Freitas Pereira ◽  
Annegret Kohler ◽  
Igor Grigoriev ◽  
Kerrie Barry ◽  
...  

Ectomycorrhizal (ECM) fungi associated with plants constitute one of the most successful symbiotic interactions in forest ecosystems. ECM support trophic exchanges with host plants and are important factors for the survival and stress resilience of trees. However, ECM clades often harbour morpho-species and cryptic lineages, with weak morphological differentiation. How this relates to intraspecific genome variability and ecological functioning is poorly known. Here, we analysed 16 European isolates of the ascomycete Cenococcum geophilum, an extremely ubiquitous forest symbiotic fungus with no known sexual or asexual spore forming structures but with a massively enlarged genome. We carried out whole-genome sequencing to identify single-nucleotide polymorphisms. We found no geographic structure at the European scale but divergent lineages within sampling sites. Evidence for recombination was restricted to specific cryptic lineages. Lineage differentiation was supported by extensive copy-number variation. Finally, we confirmed heterothallism with a single MAT1 idiomorph per genome. Synteny analyses of the MAT1 locus revealed substantial rearrangements and a pseudogene of the opposite MAT1 idiomorph. Our study provides the first evidence for substantial genome-wide structural variation, lineage-specific recombination and low continent-wide genetic differentiation in C. geophilum. Our study provides a foundation for targeted analyses of intra-specific functional variation in this major symbiosis.


2021 ◽  
Author(s):  
Pavle Erić ◽  
Aleksandra Patenković ◽  
Katarina Erić ◽  
Marija Tanasković ◽  
Slobodan Davidović ◽  
...  

2021 ◽  
pp. 109128
Author(s):  
Tatsuya Nishi ◽  
Katsuhiko Fukai ◽  
Tomoko Kato ◽  
Kotaro Sawai ◽  
Takehisa Yamamoto

Author(s):  
Agnieszka Skarzyńska ◽  
Magdalena Pawełkowicz ◽  
Wojciech Pląder

AbstractThe development of new plant varieties by genetic modification aims at improving their features or introducing new qualities. However, concerns about the unintended effects of transgenes and negative environmental impact of genetically modified plants are an obstacle for the use of these plants in crops. To analyze the impact of transgenesis on plant genomes, we analyze three cucumber transgenic lines with an introduced thaumatin II gene. After genomes sequencing, we analyzed the transgene insertion site and performed variant prediction. As a result, we obtained similar number of variants for all analyzed lines (average of 4307 polymorphisms), with high abundance in one region of chromosome 4. According to SnpEff analysis, the presence of genomic variants generally does not influence the genome functionality, as less than 2% of polymorphisms have high impact. Moreover, analysis indicates that these changes were more likely induced by in vitro culture than by the transgenesis itself. The insertion site analysis shows that the region of transgene integration could cause changes in gene expression, by gene disruption or loss of promoter region continuity.


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 344
Author(s):  
Kevin Nicolas Calderon ◽  
Johan Fabian Galindo ◽  
Clara Isabel Bermudez-Santana

Zika virus (ZIKV), without a vaccine or an effective treatment approved to date, has globally spread in the last century. The infection caused by ZIKV in humans has changed progressively from mild to subclinical in recent years, causing epidemics with greater infectivity, tropism towards new tissues and other related symptoms as a product of various emergent ZIKV–host cell interactions. However, it is still unknown why or how the RNA genome structure impacts those interactions in differential evolutionary origin strains. Moreover, the genomic comparison of ZIKV strains from the sequence-based phylogenetic analysis is well known, but differences from RNA structure comparisons have barely been studied. Thus, in order to understand the RNA genome variability of lineages of various geographic distributions better, 410 complete genomes in a phylogenomic scanning were used to study the conservation of structured RNAs. Our results show the contemporary landscape of conserved structured regions with unique conserved structured regions in clades or in lineages within circulating ZIKV strains. We propose these structures as candidates for further experimental validation to establish their potential role in vital functions of the viral cycle of ZIKV and their possible associations with the singularities of different outbreaks that lead to ZIKV populations to acquire nucleotide substitutions, which is evidence of the local structure genome differentiation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248553
Author(s):  
Nithishwer Mouroug Anand ◽  
Devang Haresh Liya ◽  
Arpit Kumar Pradhan ◽  
Nitish Tayal ◽  
Abhinav Bansal ◽  
...  

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which is a novel human coronavirus strain (HCoV) was initially reported in December 2019 in Wuhan City, China. This acute infection caused pneumonia-like symptoms and other respiratory tract illness. Its higher transmission and infection rate has successfully enabled it to have a global spread over a matter of small time. One of the major concerns involving the SARS-COV-2 is the mutation rate, which enhances the virus evolution and genome variability, thereby making the design of therapeutics difficult. In this study, we identified the most common haplotypes from the haplotype network. The conserved genes and population level variants were analysed. Non-Structural Protein 10 (NSP10), Nucleoprotein, Papain-like protease (Plpro or NSP3) and 3-Chymotrypsin like protease (3CLpro or NSP5), which were conserved at the highest threshold, were used as drug targets for molecular dynamics simulations. Darifenacin, Nebivolol, Bictegravir, Alvimopan and Irbesartan are among the potential drugs, which are suggested for further pre-clinical and clinical trials. This particular study provides a comprehensive targeting of the conserved genes. We also identified the mutation frequencies across the viral genome.


Author(s):  
Kevin Calderon Gallegos ◽  
Johan Fabian Galindo ◽  
Clara Isabel Bermudez-Santana

Zika virus (ZIKV), without a vaccine or no effective treatment approved as yet, have globally spread since the past century. The infection caused by ZIKV in humans has changed progressively from mild to subclinical in the last years, causing epidemics with greater infectivity, tropism towards new tissues, and other related symptoms as a product of various emergent ZIKV-host cell interactions. However, it is still unknown why or how the RNA genome structure impacts those interactions in differential evolutionary origin strains. Moreover, genomic comparison of ZIKV strains from the sequence-based phylogenetic analysis is well known, but differences from RNA structure comparisons are less known. Thus, in order to understand the RNA genome variability of lineages of various geographic distributions better, 412 complete genomes in a phylogenomic scanning were used for studying the conservation of structured RNAs. We found specific genomic regions, which highlight their patterns of conserved RNA structures at the level of inter-geographical comparisons. We have proposed these structures as candidates for further experimental validation to establish their potential role in vital functions of the viral cycle of ZIKV and their possible associations with the singularities of different outbreaks that occurred in specific geographic regions.


Sign in / Sign up

Export Citation Format

Share Document