vaccine virus
Recently Published Documents


TOTAL DOCUMENTS

615
(FIVE YEARS 98)

H-INDEX

46
(FIVE YEARS 5)

2021 ◽  
Vol 5 ◽  
pp. 76
Author(s):  
Shahn P.R. Bisschop ◽  
Andrew Peters ◽  
Gil Domingue ◽  
Michael C. Pearce ◽  
Jeanette Verwey ◽  
...  

Background This study determined whether the naturally attenuated, thermotolerant Newcastle disease vaccine virus I-2 could acquire virulence after five in vivo passages through SPF chickens. Methods Study design was to international requirements including European Pharmacopoeia, Ph. Eur., v9.0 04/2013:0450, 2013. I-2 Working Seed (WS) was compared with five-times-passaged I-2 WS (5XP WS) in intracerebral pathogenicity index (ICPI), Fo cleavage site sequencing and Safety tests. Results The first passage series used a 50% brain: 50% tracheal tissue challenge homogenate and was unsuccessful as I-2 was not detected after the fourth passage. A second passage series used 10% brain: 90% tracheal tissue homogenates. I-2 was isolated from tracheal tissue in each passage. However harvested titres were below the minimum challenge level (107 EID50) specified for the ICPI and Safety tests, possibly reflecting I-2’s inherently low pathogenicity (interestingly caecal tonsils yielded significant titres). Given this the WS and 5XP WS comparisons proceeded. ICPI values were 0.104 and 0.073 for the WS group and the 5XP WS group respectively confirming that I-2, whether passaged or not, expressed low pathogenicity. F0 amino-acid sequences for both WS and 5XP WS were identified as 112R-K-Q-G-R-↓-L-I-G119 and so compatible with those of avirulent ND viruses. In safety, no abnormal clinical signs were observed in both groups except for two chicks in the 5XP WS group, where one bird was withdrawn due to a vent prolapse, and another bird died with inconclusive necropsy results. Conclusions: These data, the issue of low passage titres with little or no virus isolation from brain tissues and the genomic copy approach suggest a need to amend Ph. Eur. v9.0 04/2013:0450, 2013 for naturally attenuated, low pathogenicity vaccine viruses such as I-2. From an international regulatory perspective, the study provides further definitive data demonstrating that Newcastle disease vaccine virus I-2 is safe for use.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009690
Author(s):  
Michael Famulare ◽  
Wesley Wong ◽  
Rashidul Haque ◽  
James A. Platts-Mills ◽  
Parimalendu Saha ◽  
...  

Since the global withdrawal of Sabin 2 oral poliovirus vaccine (OPV) from routine immunization, the Global Polio Eradication Initiative (GPEI) has reported multiple circulating vaccine-derived poliovirus type 2 (cVDPV2) outbreaks. Here, we generated an agent-based, mechanistic model designed to assess OPV-related vaccine virus transmission risk in populations with heterogeneous immunity, demography, and social mixing patterns. To showcase the utility of our model, we present a simulation of mOPV2-related Sabin 2 transmission in rural Matlab, Bangladesh based on stool samples collected from infants and their household contacts during an mOPV2 clinical trial. Sabin 2 transmission following the mOPV2 clinical trial was replicated by specifying multiple, heterogeneous contact rates based on household and community membership. Once calibrated, the model generated Matlab-specific insights regarding poliovirus transmission following an accidental point importation or mass vaccination event. We also show that assuming homogeneous contact rates (mass action), as is common of poliovirus forecast models, does not accurately represent the clinical trial and risks overestimating forecasted poliovirus outbreak probability. Our study identifies household and community structure as an important source of transmission heterogeneity when assessing OPV-related transmission risk and provides a calibratable framework for expanding these analyses to other populations. Trial Registration: ClinicalTrials.gov This trial is registered with clinicaltrials.gov, NCT02477046.


Author(s):  
Nathaniel M Lewis ◽  
Jessie R Chung ◽  
Timothy M Uyeki ◽  
Lisa Grohskopf ◽  
Jill M Ferdinands ◽  
...  

Abstract Relative vaccine effectiveness (rVE) are metrics commonly reported to compare absolute VE (aVE) of two vaccine products. Estimates of rVE for enhanced influenza vaccines (eIV) vs. standard inactivated influenza vaccine (IIV) have been assessed across different seasons, influenza-specific endpoints, and nonspecific endpoints (e.g., all-cause cardiovascular hospitalizations). To illustrate the challenges of comparability across studies, we conducted a scenario analysis to evaluate the effects of varying absolute VE (aVE) of IIV (i.e., as compared with placebo) on the interpretation of rVE of eIV vs IIV. We show that estimates of rVE might not be comparable across studies because additional benefits commensurate with a given estimate of rVE are dependent on the aVE for the comparator vaccine, which can depend on factors such as host response to vaccine, virus type, and clinical endpoint evaluated. These findings have implications for interpretation of rVE across studies and for sample size considerations in future trials.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Whitney R. Baldwin ◽  
Holli A. Giebler ◽  
Janae L. Stovall ◽  
Ginger Young ◽  
Kelly J. Bohning ◽  
...  

AbstractThe development of a safe and effective Zika virus (ZIKV) vaccine has become a global health priority since the widespread epidemic in 2015-2016. Based on previous experience in using the well-characterized and clinically proven dengue virus serotype-2 (DENV-2) PDK-53 vaccine backbone for live-attenuated chimeric flavivirus vaccine development, we developed chimeric DENV-2/ZIKV vaccine candidates optimized for growth and genetic stability in Vero cells. These vaccine candidates retain all previously characterized attenuation phenotypes of the PDK-53 vaccine virus, including attenuation of neurovirulence for 1-day-old CD-1 mice, absence of virulence in interferon receptor-deficient mice, and lack of transmissibility in the main mosquito vectors. A single DENV-2/ZIKV dose provides protection against ZIKV challenge in mice and rhesus macaques. Overall, these data indicate that the ZIKV live-attenuated vaccine candidates are safe, immunogenic and effective at preventing ZIKV infection in multiple animal models, warranting continued development.


2021 ◽  
Vol 51 (5) ◽  
pp. 118-124
Author(s):  
P. A. Krasochko ◽  
M. A. Ponaskov

The immunogenicity of a virus vaccine against viral pneumoenteritis in young cattle was studied in laboratory animals. The results of the selection of optimal vaccine strains to study the effects of different inactivants on infectious rhinotracheitis virus, viral diarrhea, parainfluenza-3, respiratory syncytial virus, rotavirus and coronavirus are presented. The accumulation of avirulent vaccine virus strains was carried out using established virological methods on transplanted cell cultures of MDBC (calf kidney cells) and SPEV (fetal pig kidney cells). Theotropine and formalin were used as inactivating agents to develop inactivation regimes for vaccine strains - components of the experimental vaccine. The antigenic activity of attenuated strains of infectious rhinotracheitis virus, viral diarrhea, parainfluenza-3, respiratory syncytial virus, rotavirus and coronavirus on white mice and calves and the level of specific antibodies in the sera of guinea pigs immunized with vaccines using different adjuvants were studied. Avirulent strains of viruses were used in the design of a new virus vaccine against viral pneumoenteritis: infectious rhinotracheitis (IBR-VBF-VHAVM No. 404); diarrhea (VDVBF-VHAVM No. 406); parainfluenza-3 (PG-VBF-VHAVM No. 403); respiratory syncytial virus (RSV-VBF-VHAVM No. 405); rotavirus (RTV-VBF-VHAVM No. 401) and coronavirus (CV-VBFVHAVM No. 407). The selected vaccine strains are non-reactive and induce active production of antiviral antibodies in sufficiently high titres in both laboratory animals (white mice) and farm animals (cattle). The most effective inactivating agents are 0.1% theotropine and 0.2% formalin. Two types of oil-based adjuvants, ISA 15 and ISA 25, were used to select the optimal adjuvants for the design of the virus vaccine. Adjuvant ISA 15 was used at 15% of the antigen quantity, ISA 25 at 25%. The adjuvant IZA 15 at a concentration of 15% is the optimum adjuvant for the preparation of an experimental virus vaccine against viral pneumoenteritis in young cattle.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2286
Author(s):  
Prashanth S. Ramachandran ◽  
Michael R. Wilson ◽  
Gaud Catho ◽  
Geraldine Blanchard-Rohner ◽  
Nicoline Schiess ◽  
...  

Varicella vaccine meningitis is an uncommon delayed adverse event of vaccination. Varicella vaccine meningitis has been diagnosed in 12 children, of whom 3 were immunocompromised. We now report two additional cases of vaccine meningitis in twice-immunized immunocompetent children and we perform further testing on a prior third case. We used three methods to diagnose or investigate cases of varicella vaccine meningitis, none of which have been used previously on this disease. These include metagenomic next-generation sequencing and cytokine multiplex profiling of cerebrospinal fluid and immunology exome analysis of white blood cells. In one new case, the diagnosis was confirmed by metagenomic next-generation sequencing of cerebrospinal fluid. Both varicella vaccine virus and human herpesvirus 7 DNA were detected. We performed cytokine multiplex profiling on the cerebrospinal fluid of two cases and found ten elevated biomarkers: interferon gamma, interleukins IL-1RA, IL-6, IL-8, IL-10, IL-17F, chemokines CXCL-9, CXCL-10, CCL-2, and G-CSF. In a second new case, we performed immunology exome sequencing on a panel of 356 genes, but no errors were found. After a review of all 14 cases, we concluded that (i) there is no common explanation for this adverse event, but (ii) ingestion of an oral corticosteroid burst 3–4 weeks before onset of vaccine meningitis may be a risk factor in some cases.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Mohammed Al-Rasheed ◽  
Christopher Ball ◽  
Kannan Ganapathy

AbstractChicken immune responses to infectious bronchitis virus (IBV) vaccination can depend on route of administration, vaccine strain and bird age. Typically for layer chickens, IBV vaccinations are administered by spray in the hatchery at day-old and boosted at intervals with live vaccines via drinking water (DW). Knowledge of live attenuated IBV vaccine virus kinetics and the immune response in egg-laying hens is exceptionally limited. Here, we demonstrated dissemination of vaccine viruses and differences in hen innate, mucosal, cellular and humoral immune responses following vaccination with Massachusetts or 793B strains, administered by DW or oculonasal (ON) routes. Detection of IBV in the Mass-vaccinated groups was greater during early time-points, however, 793B was detected more frequently at later timepoints. Viral RNA loads in the Harderian gland and turbinate tissues were significantly higher for ON-Mass compared to all other vaccinated groups. Lachrymal fluid IgY levels were significantly greater than the control at 14 days post-vaccination (dpv) for both vaccine serotypes, and IgA mRNA levels were significantly greater in ON-vaccinated groups compared to DW-vaccinated groups, demonstrating robust mucosal immune responses. Cell mediated immune gene transcripts (CD8-α and CD8-β) were up-regulated in turbinate and trachea tissues. For both vaccines, dissemination and vaccine virus clearance was slower when given by DW compared to the ON route. For ON administration, both vaccines induced comparable levels of mucosal immunity. The Mass vaccine induced cellular immunity to similar levels regardless of vaccination method. When given either by ON or DW, 793B vaccination induced significantly higher levels of humoral immunity.


2021 ◽  
Vol 9 (11) ◽  
pp. 2323
Author(s):  
Ninaad Lasrado ◽  
Rajkumar Arumugam ◽  
Mahima T. Rasquinha ◽  
Meghna Sur ◽  
David Steffen ◽  
...  

Group B coxsackieviruses (CVB) containing six serotypes, B1–B6, affect various organs, and multiple serotypes can induce similar diseases such as myocarditis and pancreatitis. Yet, no vaccines are currently available to prevent these infections. Translationally, the derivation of vaccines that offer protection against multiple serotypes is highly desired. In that direction, we recently reported the generation of an attenuated strain of CVB3, termed Mt10, which completely protects against both myocarditis and pancreatitis induced by the homologous wild-type CVB3 strain. Here, we report that the Mt10 vaccine can induce cross-protection against multiple CVB serotypes as demonstrated with CVB4. We note that the Mt10 vaccine could induce cross-reactive neutralizing antibodies (nABs) against both CVB1 and CVB4. In challenge studies with CVB4, the efficacy of the Mt10 vaccine was found to be 92%, as determined by histological evaluation of the heart and pancreas. Antibody responses induced in Mt10/CVB4 challenged animals indicated the persistence of cross-reactive nABs against CVB1, CVB3, and CVB4. Evaluation of antigen-specific immune responses revealed viral protein 1 (VP1)-reactive antibodies, predominantly IgG2a, IgG2b, IgG3, and IgG1. Similarly, by using major histocompatibility complex class II tetramers, we noted induction of VP1-specific CD4 T cells capable of producing multiple T cell cytokines, with interferon-γ being predominant. Finally, none of the vaccine recipients challenged with CVB4 revealed the presence of viral nucleic acid in the heart or pancreas. Taken together, our data suggest that the Mt10 vaccine can prevent infections caused by multiple CVB serotypes, paving the way for the development of monovalent CVB vaccines to prevent heart and pancreatic diseases of enteroviral origin.


2021 ◽  
Vol 5 ◽  
pp. 76
Author(s):  
Shahn P.R. Bisschop ◽  
Andrew Peters ◽  
Gil Domingue ◽  
Michael C. Pearce ◽  
Jeanette Verwey ◽  
...  

Background This study determined whether the naturally attenuated, thermotolerant Newcastle disease vaccine virus I-2 could acquire virulence after five in vivo passages through SPF chickens. Methods Study design was to international requirements including European Pharmacopoeia, Ph. Eur., v9.0 04/2013:0450, 2013. I-2 Working Seed (WS) was compared with five-times-passaged I-2 WS (5XP WS) in intracerebral pathogenicity index (ICPI), Fo cleavage site sequencing and Safety tests. Results The first passage series used a 50% brain: 50% tracheal tissue challenge homogenate and was unsuccessful as I-2 was not detected after the fourth passage. A second passage series used 10% brain: 90% tracheal tissue homogenates. I-2 was isolated from tracheal tissue in each passage. However harvested titres were below the minimum challenge level (107 EID50) specified for the ICPI and Safety tests, possibly reflecting I-2’s inherently low pathogenicity (interestingly caecal tonsils yielded significant titres). Given this the WS and 5XP WS comparisons proceeded. ICPI values were 0.104 and 0.073 for the WS group and the 5XP WS group respectively confirming that I-2, whether passaged or not, expressed low pathogenicity. F0 amino-acid sequences for both WS and 5XP WS were identified as 112R-K-Q-G-R-↓-L-I-G119 and so compatible with those of avirulent ND viruses. In safety, no abnormal clinical signs were observed in both groups except for two chicks in the 5XP WS group, where one bird was withdrawn due to a vent prolapse, and another bird died with inconclusive necropsy results. Conclusions: These data, the issue of low passage titres with little or no virus isolation from brain tissues and the genomic copy approach suggest a need to amend Ph. Eur. v9.0 04/2013:0450, 2013 for naturally attenuated, low pathogenicity vaccine viruses such as I-2. From an international regulatory perspective, the study provides further definitive data demonstrating that Newcastle disease vaccine virus I-2 is safe for use.


Gene ◽  
2021 ◽  
pp. 146085
Author(s):  
Amit Kumar ◽  
Gnanavel Venkatesan ◽  
M. Hosamani ◽  
V. Bhanuprakash ◽  
V. Balamurugan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document