scholarly journals A porcine epidemic diarrhea virus strain with distinct characteristics of four amino acid insertion in the COE region of spike protein

2021 ◽  
Vol 253 ◽  
pp. 108955
Author(s):  
Zhaoyang Ji ◽  
Da Shi ◽  
Hongyan Shi ◽  
Xiaobo Wang ◽  
Jianfei Chen ◽  
...  
2017 ◽  
Vol 91 (14) ◽  
Author(s):  
Yixuan Hou ◽  
Chun-Ming Lin ◽  
Masaru Yokoyama ◽  
Boyd L. Yount ◽  
Douglas Marthaler ◽  
...  

ABSTRACT We previously isolated a porcine epidemic diarrhea virus (PEDV) strain, PC177, by blind serial passaging of the intestinal contents of a diarrheic piglet in Vero cell culture. Compared with the highly virulent U.S. PEDV strain PC21A, the tissue culture-adapted PC177 (TC-PC177) contains a 197-amino-acid (aa) deletion in the N-terminal domain of the spike (S) protein. We orally inoculated neonatal, conventional suckling piglets with TC-PC177 or PC21A to compare their pathogenicities. Within 7 days postinoculation, TC-PC177 caused mild diarrhea and lower fecal viral RNA shedding, with no mortality, whereas PC21A caused severe clinical signs and 55% mortality. To investigate whether infection with TC-PC177 can induce cross-protection against challenge with a highly virulent PEDV strain, all the surviving piglets were challenged with PC21A at 3 weeks postinoculation. Compared with 100% protection in piglets initially inoculated with PC21A, 88% and 100% TC-PC177- and mock-inoculated piglets had diarrhea following challenge, respectively, indicating incomplete cross-protection. To investigate whether this 197-aa deletion was the determinant for the attenuation of TC-PC177, we generated a mutant (icPC22A-S1Δ197) bearing the 197-aa deletion from an infectious cDNA clone of the highly virulent PEDV PC22A strain (infectious clone PC22A, icPC22A). In neonatal gnotobiotic pigs, the icPC22A-S1Δ197 virus caused mild to moderate diarrhea, lower titers of viral shedding, and no mortality, whereas the icPC22A virus caused severe diarrhea and 100% mortality. Our data indicate that deletion of this 197-aa fragment in the spike protein can attenuate a highly virulent PEDV, but the virus may lose important epitopes for inducing robust protective immunity. IMPORTANCE The emerging, highly virulent PEDV strains have caused substantial economic losses worldwide. However, the virulence determinants are not established. In this study, we found that a 197-aa deletion in the N-terminal region of the S protein did not alter virus (TC-PC177) tissue tropism but reduced the virulence of the highly virulent PEDV strain PC22A in neonatal piglets. We also demonstrated that the primary infection with TC-PC177 failed to induce complete cross-protection against challenge by the highly virulent PEDV PC21A, suggesting that the 197-aa region may contain important epitopes for inducing protective immunity. Our results provide an insight into the role of this large deletion in virus propagation and pathogenicity. In addition, the reverse genetics platform of the PC22A strain was further optimized for the rescue of recombinant PEDV viruses in vitro. This breakthrough allows us to investigate other virulence determinants of PEDV strains and will provide knowledge leading to better control PEDV infections.


Virology ◽  
2017 ◽  
Vol 500 ◽  
pp. 50-61 ◽  
Author(s):  
Baochao Fan ◽  
Zhengyu Yu ◽  
Fengjiao Pang ◽  
Xiangwei Xu ◽  
Baimeng Zhang ◽  
...  

2019 ◽  
Vol 93 (15) ◽  
Author(s):  
Yixuan Hou ◽  
Hanzhong Ke ◽  
Jineui Kim ◽  
Dongwan Yoo ◽  
Yunfang Su ◽  
...  

ABSTRACT Porcine epidemic diarrhea virus (PEDV) causes high mortality in neonatal piglets; however, effective and safe vaccines are still not available. We hypothesized that inactivation of the 2′-O-methyltransferase (2′-O-MTase) activity of nsp16 and the endocytosis signal of the spike protein attenuates PEDV yet retains its immunogenicity in pigs. We generated a recombinant PEDV, KDKE4A, with quadruple alanine substitutions in the catalytic tetrad of the 2′-O-MTase using a virulent infectious cDNA clone, icPC22A, as the backbone. Next, we constructed another mutant, KDKE4A-SYA, by abolishing the endocytosis signal of the spike protein of KDKE4A. Compared with icPC22A, the KDKE4A and KDKE4A-SYA mutants replicated less efficiently in vitro but induced stronger type I and type III interferon responses. The pathogenesis and immunogenicities of the mutants were evaluated in gnotobiotic piglets. The virulence of KDKE4A-SYA and KDKE4A was significantly reduced compared with that of icPC22A. Mortality rates were 100%, 17%, and 0% in the icPC22A-, KDKE4A-, and KDKE4A-SYA-inoculated groups, respectively. At 21 days postinoculation (dpi), all surviving pigs were challenged orally with a high dose of icPC22A. The KDKE4A-SYA- and KDKE4A-inoculated pigs were protected from the challenge, because no KDKE4A-SYA- and one KDKE4A-inoculated pig developed diarrhea whereas all the pigs in the mock-inoculated group had severe diarrhea, and 33% of them died. Furthermore, we serially passaged the KDKE4A-SYA mutant in pigs three times and did not find any reversion of the introduced mutations. The data suggest that KDKE4A-SYA may be a PEDV vaccine candidate. IMPORTANCE PEDV is the most economically important porcine enteric viral pathogen and has caused immense economic losses in the pork industries in many countries. Effective and safe vaccines are desperately required but still not available. 2′-O-MTase (nsp16) is highly conserved among coronaviruses (CoVs), and the inactivation of nsp16 in live attenuated vaccines has been attempted for several betacoronaviruses. We show that inactivation of both 2′-O-MTase and the endocytosis signal of the spike protein is an approach to designing a promising live attenuated vaccine for PEDV. The in vivo passaging data also validated the stability of the KDKE4A-SYA mutant. KDKE4A-SYA warrants further evaluation in sows and their piglets and may be used as a platform for further optimization. Our findings further confirmed that nsp16 can be a universal target for CoV vaccine development and will aid in the development of vaccines against other emerging CoVs.


2018 ◽  
Vol 163 (9) ◽  
pp. 2327-2335 ◽  
Author(s):  
Lok R. Joshi ◽  
Faten A. Okda ◽  
Aaron Singrey ◽  
Mayara F. Maggioli ◽  
Tatiane C. Faccin ◽  
...  

Virus Genes ◽  
2016 ◽  
Vol 52 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Renfeng Li ◽  
Songlin Qiao ◽  
Yanyan Yang ◽  
Junqing Guo ◽  
Sha Xie ◽  
...  

2017 ◽  
Vol 5 (27) ◽  
Author(s):  
Yibin Qin ◽  
Bingxia Lu ◽  
Ying He ◽  
Bin Li ◽  
Qunpeng Duan ◽  
...  

ABSTRACT We report here the complete genome sequence of porcine epidemic diarrhea virus (PEDV) strain CH/GX/2015/750A (750A), which was isolated from a suckling piglet with watery diarrhea in Guangxi, China. The isolate is genetically close to other recent Chinese variant PEDVs and distinct from the classical PEDVs.


2014 ◽  
Vol 20 (4) ◽  
pp. 668-671 ◽  
Author(s):  
Kwonil Jung ◽  
Qiuhong Wang ◽  
Kelly A. Scheuer ◽  
Zhongyan Lu ◽  
Yan Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document