Developmental capacity of Ascaridia galli eggs is preserved after anaerobic storage in faeces

2018 ◽  
Vol 255 ◽  
pp. 38-42 ◽  
Author(s):  
B. Tarbiat ◽  
S. Rahimian ◽  
D.S. Jansson ◽  
P. Halvarsson ◽  
J. Höglund
2016 ◽  
Vol 45 (2) ◽  
pp. 49-71 ◽  
Author(s):  
Seth Oppong

Generally, negatives stereotypes have been shown to have negative impact on performance members of a social group that is the target of the stereotype (Schmader, Johns and Forbes 2008; Steele and Aronson, 1995). It is against the background of this evidence that this paper argues that the negative stereotypes of perceived lower intelligence held against Africans has similar impact on the general development of the continent. This paper seeks to challenge this stereotype by tracing the source of this negative stereotype to David Hume and Immanuel Kant and showing the initial errors they committed which have influenced social science knowledge about race relations. Hume and Kant argue that Africans are naturally inferior to white or are less intelligent and support their thesis with their contrived evidence that there has never been any civilized nation other than those developed by white people nor any African scholars of eminence. Drawing on Anton Wilhelm Amo’s negligence-ignorance thesis, this paper shows the Hume-Kantian argument and the supporting evidence to be fallacious. 


2020 ◽  
Vol 51 (4) ◽  
pp. 1220-1225
Author(s):  
Faraj & Al- Amery

Ascaridiosis is a very important parasitic disease of birds, it is caused by Ascaridia. This study was conducted to identify the Ascaridia species by microscopic and molecular assay in Baghdad city. One hundred and sixty fecal samples were collected from domestic pigeons during the period from 1/1/ 2019 to 31/3/ 2019.  Results showed that the rate of infection for Ascaridia spp. 15.62% by microscopic examination.  Significant difference was observed in infection rates between males and females pigeons. Fifty samples randomly selected and subjected to molecular diagnosis of Ascaridia  spp.. Molecular examination results, the total infection rate showed 16%(8/50). The eight  positive PCR products were sequenced and deposited in Gene bank data base, phylogenic analysis demonstrated that 4 sequences belongs to Ascaridia galli ( MK918635.1, MK918636.1, MK918847.1, MK919081.1), while 2 (MK919199.1, MK919200.1) belong to  Ascaridia nymphii and 2 (MK919207.1, MK919264.1)  belong to Ascaridia numidae. It is the first study in Iraq to diagnosis of  Ascaridia nymphii and Ascaridia numidae  in domesticed pigeons by using conventional PCR.


1964 ◽  
Vol 96 (1-2) ◽  
pp. 405-417 ◽  
Author(s):  
G. G. E. Scudder

AbstractAn attempt is made to re-evaluate the data on the origin of the ovipositor in insects and to explain its mode of development in living forms. Comparative developmental data from other groups of animals is cited to substantiate the claim that part of the insect ectodermal genitalia is appendicular rather than sternal in origin. It is suggested that the primary abdominal segmental appendages have provided a source of competent tissue which through subtle changes in selection, has evolved along many pathways, to form the gonocoxae, the pleuropodia, the pseudoplacenta and perhaps the prolegs in many different taxa.It is shown, by aid of sections through the insect embryo and larval stages, that the primary embryonic segmental appendages on the abdomen, do not differentiate; there is no loss of tissue and it cannot be proven that such appendages have been lost in insect phylogeny. The fact that they are represented still in the modern embryo, indicates that they have been retained. To explain the observable developmental details, it is suggested that abdominal limb histogenesis is arrested or suppressed in normal development, but this limb tissue retains its competence to differentiate. Thus development may be initiated again at a later time in postembryonic life. In this manner, the original limb tissue is available for organ formation in the maturing insect.The study has suggested that the appendages on the eighth and ninth segments of the abdomen initiate but do not complete their development in the polypod embryo. Possibly the potential limb tissue is arrested in development because it has not undergone some vital change as regards its capacity to respond (competence) to an inductor, perhaps the inductor is not available or perhaps it is not available in the correct form.There is evidence to suggest that the developmental capacity of the limb anlagen are reduced with time, so that full limb formation is not possible in postembryonic life: this can explain the development of abdominal coxae in the Thysanura and hence gonocoxae in higher insects. It is noted that should Gustafson's suggestion that the eversible sacs and gonapophyses are homologous with primary segmental genitalic ampullae prove acceptable, then the female ectodermal genitalia in insects would appear to have a dual origin.It is emphasized that the speculation expressed are being subjected to experimental study in an attempt to verify the suggested ontogeny and phylogeny.


2021 ◽  
Author(s):  
P Stamatiadis ◽  
A Boel ◽  
G Cosemans ◽  
M Popovic ◽  
B Bekaert ◽  
...  

Abstract STUDY QUESTION What is the role of POU class 5 homeobox 1 (POU5F1) in human preimplantation development and how does it compare with the mouse model? SUMMARY ANSWER POU5F1 is required for successful development of mouse and human embryos to the blastocyst stage as knockout embryos exhibited a significantly lower blastocyst formation rate, accompanied by lack of inner cell mass (ICM) formation. WHAT IS KNOWN ALREADY Clustered regularly interspaced short palindromic repeats—CRISPR associated genes (CRISPR-Cas9) has previously been used to examine the role of POU5F1 during human preimplantation development. The reported POU5F1-targeted blastocysts always retained POU5F1 expression in at least one cell, because of incomplete CRISPR-Cas9 editing. The question remains of whether the inability to obtain fully edited POU5F1-targeted blastocysts in human results from incomplete editing or the actual inability of these embryos to reach the blastocyst stage. STUDY DESIGN, SIZE, DURATION The efficiency of CRISPR-Cas9 to induce targeted gene mutations was first optimized in the mouse model. Two CRISPR-Cas9 delivery methods were compared in the B6D2F1 strain: S-phase injection (zygote stage) (n = 135) versus metaphase II-phase (M-phase) injection (oocyte stage) (n = 23). Four control groups were included: non-injected media-control zygotes (n = 43)/oocytes (n = 48); sham-injected zygotes (n = 45)/oocytes (n = 47); Cas9-protein injected zygotes (n = 23); and Cas9 protein and scrambled guide RNA (gRNA)-injected zygotes (n = 27). Immunofluorescence analysis was performed in Pou5f1-targeted zygotes (n = 37), media control zygotes (n = 19), and sham-injected zygotes (n = 15). To assess the capacity of Pou5f1-null embryos to develop further in vitro, additional groups of Pou5f1-targeted zygotes (n = 29) and media control zygotes (n = 30) were cultured to postimplantation stages (8.5 dpf). Aiming to identify differences in developmental capacity of Pou5f1-null embryos attributed to strain variation, zygotes from a second mouse strain—B6CBA (n = 52) were targeted. Overall, the optimized methodology was applied in human oocytes following IVM (metaphase II stage) (n = 101). The control group consisted of intracytoplasmically sperm injected (ICSI) IVM oocytes (n = 33). Immunofluorescence analysis was performed in human CRISPR-injected (n = 10) and media control (n = 9) human embryos. PARTICIPANTS/MATERIALS, SETTING, METHODS A gRNA-Cas9 protein mixture targeting exon 2 of Pou5f1/POU5F1 was microinjected in mouse oocytes/zygotes or human IVM oocytes. Reconstructed embryos were cultured for 4 days (mouse) or 6.5 days (human) in sequential culture media. An additional group of mouse-targeted zygotes was cultured to postimplantation stages. Embryonic development was assessed daily, with detailed scoring at late blastocyst stage. Genomic editing was assessed by immunofluorescence analysis and next-generation sequencing. MAIN RESULTS AND THE ROLE OF CHANCE Genomic analysis in mouse revealed very high editing efficiencies with 95% of the S-Phase and 100% of the M-Phase embryos containing genetic modifications, of which 89.47% in the S-Phase and 84.21% in the M-Phase group were fully edited. The developmental capacity was significantly compromised as only 46.88% embryos in the S-Phase and 19.05% in the M-Phase group reached the blastocyst stage, compared to 86.36% in control M-Phase and 90.24% in control S-Phase groups, respectively. Immunofluorescence analysis confirmed the loss of Pou5f1 expression and downregulation of the primitive marker SRY-Box transcription factor (Sox17). Our experiments confirmed the requirement of Pou5f1 expression for blastocyst development in the second B6CBA strain. Altogether, our data obtained in mouse reveal that Pou5f1 expression is essential for development to the blastocyst stage. M-Phase injection in human IVM oocytes (n = 101) similarly resulted in 88.37% of the POU5F1-targeted embryos being successfully edited. The developmental capacity of generated embryos was compromised from the eight-cell stage onwards. Only 4.55% of the microinjected embryos reached the late blastocyst stage and the embryos exhibited complete absence of ICM and an irregular trophectoderm cell layer. Loss of POU5F1 expression resulted in absence of SOX17 expression, as in mouse. Interestingly, genetic mosaicism was eliminated in a subset of targeted human embryos (9 out of 38), three of which developed into blastocysts. LIMITATIONS, REASONS FOR CAUTION One of the major hurdles of CRISPR-Cas9 germline genome editing is the occurrence of mosaicism, which may complicate phenotypic analysis and interpretation of developmental behavior of the injected embryos. Furthermore, in this study, spare IVM human oocytes were used, which may not recapitulate the developmental behavior of in vivo matured oocytes. WIDER IMPLICATIONS OF THE FINDINGS Comparison of developmental competency following CRISPR-Cas-mediated gene targeting in mouse and human may be influenced by the selected mouse strain. Gene targeting by CRISPR-Cas9 is subject to variable targeting efficiencies. Therefore, striving to reduce mosaicism can provide novel molecular insights into mouse and human embryogenesis. STUDY FUNDING/COMPETING INTEREST(S) The research was funded by the Ghent University Hospital and Ghent University and supported by the FWO-Vlaanderen (Flemish fund for scientific research, Grant no. G051516N), and Hercules funding (FWO.HMZ.2016.00.02.01). The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.


2019 ◽  
Vol 116 (45) ◽  
pp. 22774-22782 ◽  
Author(s):  
Kirsty R. McWilliam ◽  
Alasdair Ivens ◽  
Liam J. Morrison ◽  
Monica R. Mugnier ◽  
Keith R. Matthews

African trypanosomes use an extreme form of antigenic variation to evade host immunity, involving the switching of expressed variant surface glycoproteins by a stochastic and parasite-intrinsic process. Parasite development in the mammalian host is another feature of the infection dynamic, with trypanosomes undergoing quorum sensing (QS)-dependent differentiation between proliferative slender forms and arrested, transmissible, stumpy forms. Longstanding experimental studies have suggested that the frequency of antigenic variation and transmissibility may be linked, antigen switching being higher in developmentally competent, fly-transmissible, parasites (“pleomorphs”) than in serially passaged “monomorphic” lines that cannot transmit through flies. Here, we have directly tested this tenet of the infection dynamic by using 2 experimental systems to reduce pleomorphism. Firstly, lines were generated that inducibly lose developmental capacity through RNAi-mediated silencing of the QS signaling machinery (“inducible monomorphs”). Secondly, de novo lines were derived that have lost the capacity for stumpy formation by serial passage (“selected monomorphs”) and analyzed for their antigenic variation in comparison to isogenic preselected populations. Analysis of both inducible and selected monomorphs has established that antigen switch frequency and developmental capacity are independently selected traits. This generates the potential for diverse infection dynamics in different parasite populations where the rate of antigenic switching and transmission competence are uncoupled. Further, this may support the evolution, maintenance, and spread of important trypanosome variants such as Trypanosoma brucei evansi that exploit mechanical transmission.


1926 ◽  
Vol 33 (1) ◽  
pp. 59-63 ◽  
Author(s):  
Glen U. Cleeton

Sign in / Sign up

Export Citation Format

Share Document