Comparative analysis of mouse and human preimplantation development following POU5F1 CRISPR/Cas9 targeting reveals interspecies differences

2021 ◽  
Author(s):  
P Stamatiadis ◽  
A Boel ◽  
G Cosemans ◽  
M Popovic ◽  
B Bekaert ◽  
...  

Abstract STUDY QUESTION What is the role of POU class 5 homeobox 1 (POU5F1) in human preimplantation development and how does it compare with the mouse model? SUMMARY ANSWER POU5F1 is required for successful development of mouse and human embryos to the blastocyst stage as knockout embryos exhibited a significantly lower blastocyst formation rate, accompanied by lack of inner cell mass (ICM) formation. WHAT IS KNOWN ALREADY Clustered regularly interspaced short palindromic repeats—CRISPR associated genes (CRISPR-Cas9) has previously been used to examine the role of POU5F1 during human preimplantation development. The reported POU5F1-targeted blastocysts always retained POU5F1 expression in at least one cell, because of incomplete CRISPR-Cas9 editing. The question remains of whether the inability to obtain fully edited POU5F1-targeted blastocysts in human results from incomplete editing or the actual inability of these embryos to reach the blastocyst stage. STUDY DESIGN, SIZE, DURATION The efficiency of CRISPR-Cas9 to induce targeted gene mutations was first optimized in the mouse model. Two CRISPR-Cas9 delivery methods were compared in the B6D2F1 strain: S-phase injection (zygote stage) (n = 135) versus metaphase II-phase (M-phase) injection (oocyte stage) (n = 23). Four control groups were included: non-injected media-control zygotes (n = 43)/oocytes (n = 48); sham-injected zygotes (n = 45)/oocytes (n = 47); Cas9-protein injected zygotes (n = 23); and Cas9 protein and scrambled guide RNA (gRNA)-injected zygotes (n = 27). Immunofluorescence analysis was performed in Pou5f1-targeted zygotes (n = 37), media control zygotes (n = 19), and sham-injected zygotes (n = 15). To assess the capacity of Pou5f1-null embryos to develop further in vitro, additional groups of Pou5f1-targeted zygotes (n = 29) and media control zygotes (n = 30) were cultured to postimplantation stages (8.5 dpf). Aiming to identify differences in developmental capacity of Pou5f1-null embryos attributed to strain variation, zygotes from a second mouse strain—B6CBA (n = 52) were targeted. Overall, the optimized methodology was applied in human oocytes following IVM (metaphase II stage) (n = 101). The control group consisted of intracytoplasmically sperm injected (ICSI) IVM oocytes (n = 33). Immunofluorescence analysis was performed in human CRISPR-injected (n = 10) and media control (n = 9) human embryos. PARTICIPANTS/MATERIALS, SETTING, METHODS A gRNA-Cas9 protein mixture targeting exon 2 of Pou5f1/POU5F1 was microinjected in mouse oocytes/zygotes or human IVM oocytes. Reconstructed embryos were cultured for 4 days (mouse) or 6.5 days (human) in sequential culture media. An additional group of mouse-targeted zygotes was cultured to postimplantation stages. Embryonic development was assessed daily, with detailed scoring at late blastocyst stage. Genomic editing was assessed by immunofluorescence analysis and next-generation sequencing. MAIN RESULTS AND THE ROLE OF CHANCE Genomic analysis in mouse revealed very high editing efficiencies with 95% of the S-Phase and 100% of the M-Phase embryos containing genetic modifications, of which 89.47% in the S-Phase and 84.21% in the M-Phase group were fully edited. The developmental capacity was significantly compromised as only 46.88% embryos in the S-Phase and 19.05% in the M-Phase group reached the blastocyst stage, compared to 86.36% in control M-Phase and 90.24% in control S-Phase groups, respectively. Immunofluorescence analysis confirmed the loss of Pou5f1 expression and downregulation of the primitive marker SRY-Box transcription factor (Sox17). Our experiments confirmed the requirement of Pou5f1 expression for blastocyst development in the second B6CBA strain. Altogether, our data obtained in mouse reveal that Pou5f1 expression is essential for development to the blastocyst stage. M-Phase injection in human IVM oocytes (n = 101) similarly resulted in 88.37% of the POU5F1-targeted embryos being successfully edited. The developmental capacity of generated embryos was compromised from the eight-cell stage onwards. Only 4.55% of the microinjected embryos reached the late blastocyst stage and the embryos exhibited complete absence of ICM and an irregular trophectoderm cell layer. Loss of POU5F1 expression resulted in absence of SOX17 expression, as in mouse. Interestingly, genetic mosaicism was eliminated in a subset of targeted human embryos (9 out of 38), three of which developed into blastocysts. LIMITATIONS, REASONS FOR CAUTION One of the major hurdles of CRISPR-Cas9 germline genome editing is the occurrence of mosaicism, which may complicate phenotypic analysis and interpretation of developmental behavior of the injected embryos. Furthermore, in this study, spare IVM human oocytes were used, which may not recapitulate the developmental behavior of in vivo matured oocytes. WIDER IMPLICATIONS OF THE FINDINGS Comparison of developmental competency following CRISPR-Cas-mediated gene targeting in mouse and human may be influenced by the selected mouse strain. Gene targeting by CRISPR-Cas9 is subject to variable targeting efficiencies. Therefore, striving to reduce mosaicism can provide novel molecular insights into mouse and human embryogenesis. STUDY FUNDING/COMPETING INTEREST(S) The research was funded by the Ghent University Hospital and Ghent University and supported by the FWO-Vlaanderen (Flemish fund for scientific research, Grant no. G051516N), and Hercules funding (FWO.HMZ.2016.00.02.01). The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
P Stamatiadis ◽  
A Boel ◽  
G Cosemans ◽  
F Van Nieuwerburgh ◽  
B Menten ◽  
...  

Abstract Study question What is the main pathway regulating trophectoderm (TE) differentiation during pre-implantation development in mouse versus human embryos? Summary answer TEAD4 is acting upstream of CDX2 and is involved in TE differentiation, as TEAD4-null human embryos exhibit compromised TE lineage differentiation. What is known already TEAD4 is the earliest transcription factor during early embryo development, required for the expression of TE-associated genes leading to successful TE differentiation and subsequent blastocoel formation in mouse. Functional knock-out studies in mouse, inactivating Tead4 by site-specific recombination have shown that Tead4-null embryos do not express TE specific genes, including Caudal-Type Homeobox Protein 2 (Cdx2) and GATA Binding Protein 3 (Gata3), but expression of inner cell mass (ICM)-specific genes, remains unaffected. Furthermore, ablation of Tead4 compromises embryonic development and subsequent blastocoel formation in mouse. The role of TEAD4, during human pre-implantation development has not been functionally characterized yet. Study design, size, duration CRISPR-Cas9 was introduced in mouse zygotes and editing efficiency was evaluated by next-generation sequencing (NGS) on 4.5dpc embryos (n = 55). Developmental kinetics were monitored in CRISPR-Cas9 targeted (n = 83), sham-injected (n = 26) and non-injected media-control (n = 51) mouse embryos. Immunofluorescence analysis was performed in Tead4 targeted (n = 57) and non-injected media-control embryos (n = 94). The same methodology was applied in human donated in vitro matured (IVM) metaphase-II (MII) oocytes, which were CRISPR-Cas9 targeted (n = 74) during ICSI or used as media-Control (n = 33). Participants/materials, setting, methods A gRNA-Cas9 mixture targeting exon 2 of Tead4/TEAD4 was microinjected in respectively mouse 2PN (pronuclear) stage zygotes, or human IVM MII oocytes along with the sperm. Generated embryos were cultured in vitro for 4 days in mouse or 6.5 days in human. Embryonic development and morphology were assessed daily, followed by a detailed scoring at the late blastocyst stage. Successful targeting following CRISPR-Cas9 introduction was assessed by immunostaining and NGS analysis of the targeted locus. Main results and the role of chance In mouse, we confirmed previous findings, as the developmental capacity of Tead4 targeted embryos was significantly reduced starting from the morula stage and blastocyst formation rates were 8.97% in the targeted group, compared to 87.23% in the control and 87.50% in the sham group, respectively. Immunofluorescence analysis of late morula and blastocyst stage embryos confirmed the absence of Tead4, Cdx2 and Gata3, resulting from the successful interruption of the Tead4 locus (n = 57). Exon 2 of TEAD4 was successfully targeted in human. In total, 21 embryos from various developmental stages were successfully NGS analyzed and 90,48% (19 out of 21) of the embryos carried genetic modifications as a result of CRISPR-Cas9 genome editing and seven blastocysts were identified carrying exclusively frameshift mutations. In contrast to mouse, the developmental capacity of human targeted embryos (25%) did not differ significantly from the control group (23%). However, the blastocyst morphology and quality were compromised in the targeted group showing mostly grade C TE scores, containing very few cells. Immunofluorescence analysis of targeted blastocysts (n = 6) confirmed successful editing by complete absence of TEAD4 and its downstream TE marker CDX2. Limitations, reasons for caution CRISPR-Cas9 germline genome editing results in multiple editing outcomes with variable phenotypic penetrance, the mosaic nature of which complicates the phenotypic analysis and developmental behaviour of the injected embryos. Wider implications of the findings Elucidation of the evolutionary conserved molecular mechanisms that regulate self-renewal of the trophoblast lineage can give us fundamental insights on early implantation failure. Trial registration number Not Applicable


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 349-349
Author(s):  
Lina Li ◽  
Cynthia A. Presley ◽  
Bryan Kastl ◽  
Jose A. Cancelas

Abstract Contact between bone marrow (BM) hematopoietic stem cells (HSC) and osteoblast/stromal (OS) cells has been shown to be critical in the regulation of hematopoiesis. However, very little is known about the regulatory mechanisms of direct cell-to-cell communication in the hematopoietic microenvironment. BM cells are directly connected through gap junctions (GJs) which consist of narrow channels between contacting cells and are composed by connexins. Connexin 43 (Cx43) is expressed by BM OS cells. Multiple osteogenic defects have been reported in human Cx43 mutations and Cx43 has been shown to be essential in controlling osteoblast functions. Due to the perinatal death of Cx43 germline null mice, an interferon-inducible, conditional genetic approach (Mx1-Cre), expressed by both hematopoietic and stromal BM cells, was used to study the role of Cx43 in stem cell function. We have previously reported that Cx43 is critical for the interaction between stroma and HSC in CAFC assays (Cancelas J.A. et al., Blood 2000) and in adult hematopoiesis after 5-fluorouracil (5-FU) administration (Presley C, et al., Cell Comm. Adh., 2005). Here, we observed that after 5-FU administration, Cx43 expression is predominantly located in the endosteum. To study the role of stroma-dependent Cx43 in hematopoiesis, we developed hematopoietic chimeras by BM transplantation of wild-type Cx43 HSC into stromal Cx43-deficient mice. Stromal Cx43 deficiency induced a severe impairment of blood cell formation during the recovery phase after 5-FU administration compared to stromal Mx1-Cre-Tg wild-type controls (Table 1), as well as a significant decrease in BM cellularity (~60% reduction) and progenitor cell content (~83% reduction). Cell cycle analysis of 5-FU-treated BM progenitors from stromal Cx43-deficient mice showed an S-phase arrest (S phase: 63.5%; G2/M phase: <1%) compared to wild-type chimeric mice (S phase: 38.6%, G2/M phase: 7.8%, p=0.01) suggesting a cell division blockade. Unlike Cx43-deficient primary mice, a differentiation arrest at the HSC compartment was observed in 5-FU-treated, stromal Cx43-deficient mice, since the content of competitive repopulating units (CRU) at 1 month, of 14-day post-5-FU BM of stromal Cx43-deficient mice was increased (27.7 ± 0.67) compared to recipients of HSC from stromal wild-type counterparts (26.5 ± 0.92 CRU, p < 0.01). Interestingly, wild-type hematopoietic progenitor homing in stromal Cx43-deficient BM was severely impaired with respect to wild-type BM (5.1% vs10.4 %, respectively, p < 0.01), while hematopoietic Cx43-deficient BM progenitors normally homed into the BM, suggesting a differential role for Cx43 in stromal and HSC. In conclusion, expression of Cx43 in osteoblasts and stromal cells appears to play a crucial role in the regulation of HSC homing in BM and hematopoietic regeneration after chemotherapy. Peripheral blood counts of WT and stromal Cx43-deficient chimeric mice after 5-FU administration (150 mg/Kg) Neutrophil counts (×10e9/L) Reticulocyte count (%) Day post-5-FU WT Cx43-deficient WT Cx43-deficient * p < 0.05 Day +8 2.89 ± 0.06 0.81 ± 0.02* 2.0 ± 0.6 3.0 ± 0.9 Day +11 9.11 ± 2.5 3.13 ± 0.8* 6.1 ± 0.6 2.7 ± 0.3* Day +14 6.22 ± 5.7 7.58 ± 8.2 7.5 ± 0.5 2.5 ± 0.5*


Zygote ◽  
1994 ◽  
Vol 2 (4) ◽  
pp. 281-287 ◽  
Author(s):  
Asangla Ao ◽  
Robert P. Erickson ◽  
Robert M.L. Winston ◽  
Alan H Handysude

SummaryGlobal activation of the embryonic genome occurs at the 4– to 8–cell stage in human embryos and is marked by continuation of early cleavage divisions in the presence of transcriptional inhibitors. Here we demonstrate, using recerse transcripase–polymerase chin reaction (Rt–PCR), the presence of transcripts for wo paternal Y chromosomal genes, ZFY and SRY in human preimplantation embryos. ZFY transcripts were detected as early as the pronucleate stage, 20–24 h post-insemination In vitro and at intermediate stages up to the blastocyst stage. SRY Transcripts were also detected at 2–cell to blastocyos observed in many mammalian species focuses attention on the role of events in six determination prior to gonad differentiation.


2000 ◽  
Author(s):  
Gideon Grafi ◽  
Brian Larkins

The focus of this research project is to investigate the role of endoreduplication in maize endosperm development and the extent to which this process contributes to high levels of starch and storage protein synthesis. Although endoreduplication has been widely observed in many cells and tissues, especially those with high levels of metabolic activity, the molecular mechanisms through which the cell cycle is altered to produce consecutive cycles of S-phase without an intervening M-phase are unknown. Our previous research has shown that changes in the expression of several cell cycle regulatory genes coincide with the onset of endoreduplication. During this process, there is a sharp reduction in the activity of the mitotic cyclin-dependent kinase (CDK) and activation of the S-phase CDK. It appears the M-phase CDK is stable, but its activity is blocked by a proteinaceous inhibitor. Coincidentally, the S-phase checkpoint protein, retinoblastoma (ZmRb), becomes phosphorylated, presumably releasing an E2F-type transcriptional regulator which promotes the expression of genes responsible for DNA synthesis. To investigate the role of these cell cycle proteins in endoreduplication, we have created transgenic maize plants that express various genes in an endosperm-specific manner using a storage protein (g-zein) promoter. During the first year of the grant, we constructed point mutations of the maize M-phase kinase, p34cdc2. One alteration replaced aspartic acid at position 146 with asparagine (p3630-CdcD146N), while another changed threonine 161 to alanine (p3630-CdcT161A). These mutations abolish the activity of the CDK. We hypothesized that expression of the mutant forms of p34cdc2 in endoreduplicating endosperm, compared to a control p34cdc2, would lead to extra cycles of DNA synthesis. We also fused the gene encoding the regulatory subunit of the M- phase kinase, cyclin B, under the g-zein promoter. Normally, cyclin B is expected to be destroyed prior to the onset of endoreduplication. By producing high levels of this protein in developing endosperm, we hypothesized that the M-phase would be extended, potentially reducing the number of cycles of endoreduplication. Finally, we genetically engineered the wheat dwarf virus RepA protein for endosperm-specific expression. RepA binds to the maize retinoblastoma protein and presumably releases E2F-like transcription factors that activate DNA synthesis. We anticipated that inactivation of ZmRb by RepA would lead to additional cycles of DNA synthesis.


2021 ◽  
Author(s):  
Katheeja Muhseena N. ◽  
Shankar Prasad Das ◽  
Suparna Laha

Abstract Background: The helicase Chl1p is a nuclear protein required for sister-chromatid cohesion, transcriptional silencing, rDNA recombination, ageing and plays an instrumental role in chromatin remodeling. This budding yeast protein is known to preserve genome integrity and spindle length in S-phase. Here we show additional roles of Chl1p at G1/S phase of the cell cycle following DNA damage. Results: G1 arrested cells when exposed to DNA damage are more sensitive and show bud emergence with a faster kinetics in chl1 mutants compared to wild-type cells. This role of Chl1p in G1 phase is Rad9p dependent and independent of Rad24 and Rad53. rad9chl1 shows similar bud emergence as the single mutants chl1 and rad9 whereas rad24chl1 and rad53chl1 shows faster bud emergence compared to the single mutants rad24 , rad53 and chl1 . In case of damage induced by genotoxic agent like hydroxyurea, Chl1p acts as a checkpoint at G1/S. The faster movement of DNA content through G1/S phase and difference in phosphorylation profile of Rad53p in wild type and chl1 cells confirms the checkpoint defect in chl1 mutant cells. Further we have observed that the checkpoint defect is synergistic with the replication checkpoint Sgs1p and functions in prallel to the checkpoint pathway of Rad24p. Conclusion: Chl1p shows Rad53p independent bud emergence and Rad53p dependent checkpoint, confirms its requirement in two different pathways to maintain the G1/S arrest when cells are exposed to damaging agents. The bud emergence kinetics and DNA segregation were similar to wild type when given the same damage in nocodazole treated chl1 cells which establishes the absence of any role of Chl1p at the G2/M phase. The novelty of this paper lies in revealing the versatile role of Chl1p in checkpoints as well as repair towards regulating G1/S transition. Chl1 thus regulates the G1/S phase by affecting the G1 replication checkpoint pathway and shows an additive effect with Rad24p as well as Rad53p activation when damaging agents perturbs the DNA.


Author(s):  
T. A. Kodyleva ◽  
A. O. Kirillova ◽  
E. A. Tyschik ◽  
V. V. Makarov ◽  
A. V. Khromov ◽  
...  

The editing of the CCR5 gene in the CD4+ T cell genome is an effective way of preventing HIV-1 proliferation. Very similar strategies can be used to protect the fetus of an HIV-infected female showing a weak response to antiretroviral therapy. Inducing the “natural” CCR5delta32 mutation in a zygote may guard the fetus against HIV infection both in utero and at birth. In this study, we optimize the CRISPR-Cas9 system to induce a homozygous 32-nt deletion similar to the naturally occurring CCR5delta32 allele in the human zygote at the S-phase. Edits were done in the abnormal tripronuclear zygotes unsuitable for IVF. Sixteen tripronuclear zygotes in the S-phase obtained from WT CCR5 donors were injected with an original CRISPR-Cas9 system designed by the authors. Upon injection, the zygotes were transferred into the Blastocyst (COOK) embryo culture medium and cultured for 5 days in a CO2 incubator until blastocysts were formed (approximately 250 cells). Eight zygotes that successfully developed into blastocysts were PCR-genotyped to analyze the efficacy of genome editing. Of 16 zygotes injected with CRISPR-Cas9, only 8 reached the blastocyst stage. PCR genotyping revealed the absence of the initial WT CCR5 variant in 5 of 8 blastocysts (100% CCR5delta32 homozygous). Two had about 3% and one about 20% of WT CCR5 mosaicism. This leads us to conclude that the efficacy of the proposed CRISPR-Cas9 system for the induction of the CCR5delta32 mutation in human embryos is very high producing more than 50% of completely modified embryos.


Genetics ◽  
1995 ◽  
Vol 140 (4) ◽  
pp. 1235-1245 ◽  
Author(s):  
Y Iino ◽  
Y Hiramine ◽  
M Yamamoto

Abstract The requirement of the cdc2, cdc13 and cdc25 genes for meiosis in Schizosaccharomyces pombe was investigated using three different conditions to induce meiosis. These genes were known to be required for meiosis II. cdc13 and cdc25 are essential for meiosis I. The cdc2 gene, which is required for the initiation of both mitotic S-phase and M-phase, is essential for premeiotic DNA synthesis and meiosis II. The requirement of cdc2 for meiosis I was unclear. This contrasts with Saccharomyces cerevisiae, where CDC28, the homolog of cdc2, is required for meiosis I but not for premeiotic DNA synthesis. Expression of cdc13 and cdc25 was induced after premeiotic DNA synthesis, reaching a sharp peak before the first nuclear division. Expression of cdc22, encoding the large subunit of ribonucleotide reductase, was also induced but the peak was before premeiotic DNA synthesis. The induction of cdc13 and cdc25 was largely dependent on DNA synthesis and the function of the mei4 gene. The mei4 gene itself was also induced in a DNA synthesis-dependent manner. The chain of gene expression activating cdc25 may be important as part of the mechanism that ensures the dependency of nuclear division on DNA replication during meiosis.


2004 ◽  
Vol 16 (2) ◽  
pp. 216
Author(s):  
J.Y. Kim ◽  
S.J. Uhm ◽  
K.S. Chung ◽  
H.T. Lee

Mouse parthenogenetic embryos have been known to be unable to develop to term and are absorbed from Day 11. However, Nagy et al. (1990 Development 110, 815–821) reported that the aggregated tetraploid with embryonic stem (ES) cell developed to term and survived after birth. Thus, our study investigated the developmental capacity of the aggregated ES cells with mouse parthenogenetic embryos. Oocytes obtained from superovulated female mice (BCF1) were treated with 7% ethanol and 5μgmL−1 cytochalasin B for the production of pathenotes and co-cultured with sperm (1×106mL−1) for production of fertilized embryos. The reporter vector (pNeoEGFP) was introduced into ES cells (129S4/SvJae) by electroporation. At the 8-cell stage, pathenotes or fertilized embryos, from which the zona pellucida was removed, were co-cultured with ES cells for 4 h. The aggregated parthenotes or fertilized embryos with 5∼10 ES cells were cultured to the blastocyst stage, and transferred into the uteri of 2.5-day post-coitum pseudopregnant recipients. In experiment I, 144 parthenogenetic blastocysts were transferred into the uterine horns of 9 pseudopregnant recipients, and 5 recipients became pregnant. At Day 9, all fetuses were observed visible in uteri of pregnant fonder mice. At Days 10–11, many fetuses were observed in the progress of absorption in uteri of pregnant fonder mice, but a few fetuses were still alive. However, pathenogenetic fetuses were not detected alive beyond 11 days. In experiment II, the 171 aggregated fertilized embryos with ES cells were transferred (15–20 blastocysts/recipient) into 10 recipients and successfully produced 5 offspring from a recipient. We found that three newborn were chimeric mice derived from ES cells. In experiment III, the 209 aggregated parthenotes with ES cells failed to produce offspring, but inserted pNeoEGFP gene in ES cells was detected in the parthenogenetic 1 of 7 fetuses at 15-days of post-gestation by polymerase chain reactions. Therefore, this result suggests that the parthenotes show restricted development to fetus stage, but the aggregated parthenotes with ES cells might extend their developmental capacity. In the future, we will characterize the mechanism of this unusual phenomenon to understand the role of ES cells during development of chimeric parthenotes with ES cells.


2019 ◽  
Vol 25 (7) ◽  
pp. 397-407
Author(s):  
Yvonne Wilson ◽  
Ian D Morris ◽  
Susan J Kimber ◽  
Daniel R Brison

Abstract Apoptosis occurs primarily in the blastocyst inner cell mass, cells of which go on to form the foetus. Apoptosis is likely to play a role in ensuring the genetic integrity of the foetus, yet little is known about its regulation. In this study, the role of the mouse gene, transformation-related protein 53 (Trp53) in the response of embryos to in vitro culture and environmentally induced DNA damage was investigated using embryos from a Trp53 knockout mouse model. In vivo-derived blastocysts were compared to control embryos X-irradiated at the two-cell stage and cultured to Day 5. An analysis of DNA by comet assay demonstrated that 1.5 Gy X-irradiation directly induced damage in cultured two-cell mouse embryos; this was correlated with retarded development to blastocyst stage and increased apoptosis at the blastocyst stage but not prior to this. Trp53 null embryos developed to blastocysts at a higher frequency and with higher cell numbers than wild-type embryos. Trp53 also mediates apoptosis in conditions of low levels of DNA damage, in vivo or in vitro in the absence of irradiation. However, following DNA damage induced by X-irradiation, apoptosis is induced by Trp53 independent as well as dependent mechanisms. These data suggest that Trp53 and apoptosis play important roles in normal mouse embryonic development both in vitro and in vivo and in response to DNA damage. Therefore, clinical ART practices that alter apoptosis in human embryos and/or select embryos for transfer, which potentially lack a functional Trp53 gene, need to be carefully considered.


Zygote ◽  
2016 ◽  
Vol 24 (6) ◽  
pp. 869-879 ◽  
Author(s):  
D.E. Rosa ◽  
J.M. Anchordoquy ◽  
J.P. Anchordoquy ◽  
M.A. Sirini ◽  
J.A. Testa ◽  
...  

SummaryThe aim of this study was to investigate the influence of copper (Cu) duringin vitromaturation (IVM) on apoptosis and DNA integrity of cumulus cells (CC); and oocyte viability. Also, the role of CC in the transport of Cu during IVM was evaluated on oocyte developmental capacity. Damage of DNA was higher in CC matured without Cu (0 µg/dl Cu,P< 0.01) with respect to cells treated with Cu for cumulus–oocyte complexes (COCs) exposed to 0, 20, 40, or 60 µg/dl Cu). The percentage of apoptotic cells was higher in CC matured without Cu than in CC matured with Cu. Cumulus expansion and viability of CC did not show differences in COC treated with 0, 20, 40, or 60 µg/dl Cu during IVM. Afterin vitrofertilization (IVF), cleavage rates were higher in COC and DO + CC (denuded oocytes + CC) with or without Cu than in DO. Independently of CC presence (COC, DO + CC or DO) the blastocyst rates were higher when 60 µg/dl Cu was added to IVM medium compared to medium alone. These results indicate that Cu supplementation to IVM medium: (i) decreased DNA damage and apoptosis in CC; (ii) did not modify oocyte viability and cumulus expansion; and (iii) improved subsequent embryo development up to blastocyst stage regardless of CC presence during IVM.


Sign in / Sign up

Export Citation Format

Share Document