The role of water in structural changes of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide) studied by FTIR, Raman spectroscopy and quantum chemical calculations

2009 ◽  
Vol 51 (1) ◽  
pp. 44-51 ◽  
Author(s):  
Jiří Dybal ◽  
Miroslava Trchová ◽  
Pavel Schmidt
Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 48
Author(s):  
Ana M. Herrero ◽  
Claudia Ruiz-Capillas

Considerable attention has been paid to emulsion gels (EGs) in recent years due to their interesting applications in food. The aim of this work is to shed light on the role played by chia oil in the technological and structural properties of EGs made from soy protein isolates (SPI) and alginate. Two systems were studied: oil-free SPI gels (SPI/G) and the corresponding SPI EGs (SPI/EG) that contain chia oil. The proximate composition, technological properties (syneresis, pH, color and texture) and structural properties using Raman spectroscopy were determined for SPI/G and SPI/EG. No noticeable (p > 0.05) syneresis was observed in either sample. The pH values were similar (p > 0.05) for SPI/G and SPI/EG, but their texture and color differed significantly depending on the presence of chia oil. SPI/EG featured significantly lower redness and more lightness and yellowness and exhibited greater puncture and gel strengths than SPI/G. Raman spectroscopy revealed significant changes in the protein secondary structure, i.e., higher (p < 0.05) α-helix and lower (p < 0.05) β-sheet, turn and unordered structures, after the incorporation of chia oil to form the corresponding SPI/EG. Apparently, there is a correlation between these structural changes and the textural modifications observed.


Author(s):  
Keisuke Saito ◽  
Minesato Nakagawa ◽  
Manoj Mandal ◽  
Hiroshi Ishikita

AbstractPhotosystem II (PSII) contains Ca2+, which is essential to the oxygen-evolving activity of the catalytic Mn4CaO5 complex. Replacement of Ca2+ with other redox-inactive metals results in a loss/decrease of oxygen-evolving activity. To investigate the role of Ca2+ in this catalytic reaction, we investigate artificial Mn3[M]O2 clusters redox-inactive metals  [M] ([M]  = Mg2+, Ca2+, Zn2+, Sr2+, and Y3+), which were synthesized by Tsui et al. (Nat Chem 5:293, 2013). The experimentally measured redox potentials (Em) of these clusters are best described by the energy of their highest occupied molecular orbitals. Quantum chemical calculations showed that the valence of metals predominantly affects Em(MnIII/IV), whereas the ionic radius of metals affects Em(MnIII/IV) only slightly.


Sign in / Sign up

Export Citation Format

Share Document