scholarly journals Herpes simplex virus type 1 tegument proteins VP1/2 and UL37 are associated with intranuclear capsids

Virology ◽  
2007 ◽  
Vol 361 (2) ◽  
pp. 316-324 ◽  
Author(s):  
Michelle A. Bucks ◽  
Kevin J. O'Regan ◽  
Michael A. Murphy ◽  
John W. Wills ◽  
Richard J. Courtney
2008 ◽  
Vol 82 (15) ◽  
pp. 7388-7394 ◽  
Author(s):  
Sara K. Shanda ◽  
Duncan W. Wilson

ABSTRACT Microtubule-mediated anterograde transport is essential for the transport of herpes simplex virus type 1 (HSV-1) along axons, yet little is known regarding the mechanism and the machinery required for this process. Previously, we were able to reconstitute anterograde transport of HSV-1 on microtubules in an in vitro microchamber assay. Here we report that the large tegument protein UL36p is essential for this trafficking. Using a fluorescently labeled UL36 null HSV-1 strain, KΔUL36GFP, we found that it is possible to isolate a membrane-associated population of this virus. Although these viral particles contained normal amounts of tegument proteins VP16, vhs, and VP22, they displayed a 3-log decrease in infectivity and showed a different morphology compared to UL36p-containing virions. Membrane-associated KΔUL36GFP also displayed a slightly decreased binding to microtubules in our microchamber assay and a two-thirds decrease in the frequency of motility. This decrease in binding and motility was restored when UL36p was supplied in trans by a complementing cell line. These findings suggest that UL36p is necessary for HSV-1 anterograde transport.


2003 ◽  
Vol 77 (8) ◽  
pp. 4888-4898 ◽  
Author(s):  
Michael J. Brignati ◽  
Joshua S. Loomis ◽  
John W. Wills ◽  
Richard J. Courtney

ABSTRACT Tegument proteins of herpes simplex virus type 1 (HSV-1) are hypothesized to contain the functional information required for the budding or envelopment process proposed to occur at cytoplasmic compartments of the host cell. One of the most abundant tegument proteins of HSV-1 is the UL49 gene product, VP22, a 38-kDa protein of unknown function. To study its subcellular localization, a VP22-green fluorescent protein chimera was expressed in transfected human melanoma (A7) cells. In the absence of other HSV-1 proteins, VP22 localizes to acidic compartments of the cell that may include the trans-Golgi network (TGN), suggesting that this protein is membrane associated. Membrane pelleting and membrane flotation assays confirmed that VP22 partitions with the cellular membrane fraction. Through truncation mutagenesis, we determined that the membrane association of VP22 is a property attributed to amino acids 120 to 225 of this 301-amino-acid protein. The above results demonstrate that VP22 contains specific information required for targeting to membranes of acidic compartments of the cell which may be derived from the TGN, suggesting a potential role for VP22 during tegumentation and/or final envelopment.


2008 ◽  
Vol 83 (1) ◽  
pp. 105-116 ◽  
Author(s):  
Ashley P. E. Roberts ◽  
Fernando Abaitua ◽  
Peter O'Hare ◽  
David McNab ◽  
Frazer J. Rixon ◽  
...  

ABSTRACT Studies with herpes simplex virus type 1 (HSV-1) have shown that secondary envelopment and virus release are blocked in mutants deleted for the tegument protein gene UL36 or UL37, leading to the accumulation of DNA-containing capsids in the cytoplasm of infected cells. The failure to assemble infectious virions has meant that the roles of these genes in the initial stages of infection could not be investigated. To circumvent this, cells infected at a low multiplicity were fused to form syncytia, thereby allowing capsids released from infected nuclei access to uninfected nuclei without having to cross a plasma membrane. Visualization of virus DNA replication showed that a UL37-minus mutant was capable of transmitting infection to all the nuclei within a syncytium as efficiently as the wild-type HSV-1 strain 17+ did, whereas infection by UL36-minus mutants failed to spread. Thus, these inner tegument proteins have differing functions, with pUL36 being essential during both the assembly and uptake stages of infection, while pUL37 is needed for the formation of virions but is not required during the initial stages of infection. Analysis of noninfectious enveloped particles (L-particles) further showed that pUL36 and pUL37 are dependent on each other for incorporation into tegument.


2009 ◽  
Vol 145 (2) ◽  
pp. 173-186 ◽  
Author(s):  
Barbara J. Kelly ◽  
Cornel Fraefel ◽  
Anthony L. Cunningham ◽  
Russell J. Diefenbach

2001 ◽  
Vol 120 (5) ◽  
pp. A136-A137
Author(s):  
K TSAMAKIDES ◽  
E PANOTOPOULOU ◽  
D DIMITROULOPOULOS ◽  
M CHRISTOPOULO ◽  
D XINOPOULOS ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document