Phosphorylation and dephosphorylation events that regulate viral mRNA translation

2006 ◽  
Vol 119 (1) ◽  
pp. 89-99 ◽  
Author(s):  
Ian Mohr
Keyword(s):  
1985 ◽  
Vol 5 (10) ◽  
pp. 2552-2558 ◽  
Author(s):  
L E Babiss ◽  
H S Ginsberg ◽  
J E Darnell

Late in adenovirus infection, large amounts of viral mRNA accumulate while cell mRNA transport and translation decrease. Viruses deleted in the E1B region of type 5 adenovirus do not produce the same outcome: (i) viral mRNA synthesis by the mutants is normal, delivery to the cytoplasm is 50 to 75% of normal, but steady-state levels of viral mRNA are decreased 10-fold; (ii) cell mRNA synthesis and transport continue normally in the mutant virus-infected cell; and (iii) translation of preexisting cell mRNA which is disrupted in wild-type infection remains normal in mutant-virus-infected cells. Thus E1B proteins are required for accumulation of virus mRNA and for induction of the failure of host cell mRNA transport and translation. If a single function is involved, by inference the transport and some aspect of translation of mRNAs could be linked.


2008 ◽  
Vol 82 (12) ◽  
pp. 5847-5859 ◽  
Author(s):  
Brian J. Kempf ◽  
David J. Barton

ABSTRACT Poliovirus (PV) 2A protease (2APro) cleaves eukaryotic initiation factors 4GI and 4GII (eIF4GI and eIF4GII) within virus-infected cells, effectively halting cap-dependent mRNA translation. PV mRNA, which does not possess a 5′ cap, is translated via cap-independent mechanisms within viral protease-modified messenger ribonucleoprotein (mRNP) complexes. In this study, we determined that 2APro activity was required for viral polysome formation and stability. 2APro cleaved eIF4GI and eIF4GII as PV polysomes assembled. A 2ACys109Ser (2APro with a Cys109Ser mutation) protease active site mutation that prevented cleavage of eIF4G coordinately inhibited the de novo formation of viral polysomes, the stability of viral polysomes, and the stability of PV mRNA within polysomes. 2ACys109Ser-associated defects in PV mRNA and polysome stability correlated with defects in PV mRNA translation. 3CPro activity was not required for viral polysome formation or stability. 2APro-mediated cleavage of eIF4G along with poly(rC) binding protein binding to the 5′ terminus of uncapped PV mRNA appear to be concerted mechanisms that allow PV mRNA to form mRNP complexes that evade cellular mRNA degradation machinery.


1988 ◽  
Vol 66 (8) ◽  
pp. 803-812 ◽  
Author(s):  
Guy Lemay

This short review focuses on the mechanisms involved in transcription and translation in mouse L cells infected with reoviruses. The viral genomic RNA (double-stranded), retained in the inner capsid following removal of the outer capsid of the infecting virion, is transcribed by a viral polymerase. The synthesized viral mRNA is blocked at the 5′ end by a cap structure similar to the cap structure of cellular mRNA but synthesized by the viral enzymes of the inner capsid. This viral mRNA is also used as the first strand and template for the synthesis of the second strand of viral genomic RNA; the newly replicated genome is retained in an inner capsid structure to generate the progeny subviral particles. These particles are active at the transcriptional level but do not synthesize the cap, owing to the absence of the guanylyltransferase activity involved in the formation of this structure. The uncapped mRNA, or late viral mRNA, constitutes the bulk part of viral mRNA. The transcription of the viral genome is finally arrested upon addition of outer capsid proteins to obtain a mature virion. During viral multiplication, there is a gradual inhibition of host-cell protein synthesis, concomitant with stimulation of late viral mRNA translation. The two phenomena are apparently distinct. Furthermore, the inhibition of host-cell protein synthesis has been shown to be dispensable for normal virus multiplication; however, it might accelerate it. The mechanisms responsible for inhibition are still unclear but might involve modifications in the activity of cellular cap-binding proteins. This last point suggests an analogy with poliovirus infection; the two systems are thus briefly compared. Possible significance of the absence of a poly(A) tract at the 3′ end of reovirus mRNA, in contrast to the occurrence of such a sequence at the end of cellular mRNA, is also examined. Different models involving cap discrimination, competition between mRNAs, or alteration of cell membrane permeability have been proposed to explain the events observed at the translational level in reovirus-infected cells. These different models are compared. Finally, recent data implicating the viral sigma 3 capsid protein in efficient translation of late viral mRNA are discussed.


2007 ◽  
Vol 283 (3) ◽  
pp. 1340-1349 ◽  
Author(s):  
Mateen A. Khan ◽  
Hiroshi Miyoshi ◽  
Daniel R. Gallie ◽  
Dixie J. Goss

Potyvirus genome linked protein, VPg, interacts with translation initiation factors eIF4E and eIFiso4E, but its role in protein synthesis has not been elucidated. We show that addition of VPg to wheat germ extract leads to enhancement of uncapped viral mRNA translation and inhibition of capped viral mRNA translation. This provides a significant competitive advantage to the uncapped viral mRNA. To understand the molecular basis of these effects, we have characterized the interaction of VPg with eIF4F, eIFiso4F, and a structured RNA derived from tobacco etch virus (TEV RNA). When VPg formed a complex with eIF4F, the affinity for TEV RNA increased more than 4-fold compared with eIF4F alone (19.4 and 79.0 nm, respectively). The binding affinity of eIF4F to TEV RNA correlates with translation efficiency. VPg enhanced eIFiso4F binding to TEV RNA 1.6-fold (178 nm compared with 108 nm). Kinetic studies of eIF4F and eIFiso4F with VPg show ∼2.6-fold faster association for eIFiso4F·VPg as compared with eIF4F·VPg. The dissociation rate was ∼2.9-fold slower for eIFiso4F than eIF4F with VPg. These data demonstrate that eIFiso4F can kinetically compete with eIF4F for VPg binding. The quantitative data presented here suggest a model where eIF4F·VPg interaction enhances cap-independent translation by increasing the affinity of eIF4F for TEV RNA. This is the first evidence of direct participation of VPg in translation initiation.


1999 ◽  
Vol 73 (8) ◽  
pp. 6506-6516 ◽  
Author(s):  
Michael Gale ◽  
Bart Kwieciszewski ◽  
Michelle Dossett ◽  
Haruhisa Nakao ◽  
Michael G. Katze

ABSTRACT Hepatitis C virus (HCV) is prevalent worldwide and has become a major cause of liver dysfunction and hepatocellular carcinoma. The high prevalence of HCV reflects the persistent nature of infection and the large frequency of cases that resist the current interferon (IFN)-based anti-HCV therapeutic regimens. HCV resistance to IFN has been attributed, in part, to the function of the viral nonstructural 5A (NS5A) protein. NS5A from IFN-resistant strains of HCV can repress the PKR protein kinase, a mediator of the IFN-induced antiviral and apoptotic responses of the host cell and a tumor suppressor. Here we examined the relationship between HCV persistence and resistance to IFN therapy. When expressed in mammalian cells, NS5A from IFN-resistant HCV conferred IFN resistance to vesicular stomatitis virus (VSV), which normally is sensitive to the antiviral actions of IFN. NS5A blocked viral double-stranded RNA (dsRNA)-induced PKR activation and phosphorylation of eIF-2α in IFN-treated cells, resulting in high levels of VSV mRNA translation. Mutations within the PKR-binding domain of NS5A restored PKR function and the IFN-induced block to viral mRNA translation. The effects due to NS5A inhibition of PKR were not limited to the rescue of viral mRNA translation but also included a block in PKR-dependent host signaling pathways. Cells expressing NS5A exhibited defective PKR signaling and were refractory to apoptosis induced by exogenous dsRNA. Resistance to apoptosis was attributed to an NS5A-mediated block in eIF-2α phosphorylation. Moreover, cells expressing NS5A exhibited a transformed phenotype and formed solid tumors in vivo. Disruption of apoptosis and tumorogenesis required the PKR-binding function of NS5A, demonstrating that these properties may be linked to the IFN-resistant phenotype of HCV.


2006 ◽  
Vol 80 (8) ◽  
pp. 3701-3711 ◽  
Author(s):  
John H. Connor ◽  
Margie O. McKenzie ◽  
Douglas S. Lyles

ABSTRACT The recent solution of the crystal structure of a fragment of the vesicular stomatitis virus matrix (M) protein suggested that amino acids 121 to 124, located on a solvent-exposed loop of the protein, are important for M protein self-association and association with membranes. These residues were mutated from the hydrophobic AVLA sequence to the polar sequence DKQQ. Expression and purification of this mutant from bacteria showed that it was structurally stable and that the mutant M protein had self-association kinetics similar to those of the wild-type M protein. Analysis of the membrane association of M protein in the context of infection with isogenic recombinant viruses showed that both wild-type and mutant M proteins associated with membranes to the same extent. Virus expressing the mutant M protein did show an approximately threefold-lower binding affinity of M protein for nucleocapsid-M complexes. In contrast to the relatively minor effects of the M protein mutation on virus assembly, the mutant virus exhibited growth restriction in MDBK but not BHK cells, a slower induction of apoptosis, and lower viral-protein synthesis. Despite translating less viral protein, the mutant virus produced more viral mRNA, showing that the mutant virus could not effectively promote viral translation. These results demonstrate that the 121-to-124 region of the VSV M protein plays a minor role in virus assembly but is involved in virus-host interactions and VSV replication by augmenting viral-mRNA translation.


2000 ◽  
Vol 74 (15) ◽  
pp. 7064-7071 ◽  
Author(s):  
Patrice Vende ◽  
Maria Piron ◽  
Nathalie Castagné ◽  
Didier Poncet

ABSTRACT In contrast to the vast majority of cellular proteins, rotavirus proteins are translated from capped but nonpolyadenylated mRNAs. The viral nonstructural protein NSP3 specifically binds the 3′-end consensus sequence of viral mRNAs and interacts with the eukaryotic translation initiation factor eIF4G. Here we show that expression of NSP3 in mammalian cells allows the efficient translation of virus-like mRNA. A synergistic effect between the cap structure and the 3′ end of rotavirus mRNA was observed in NSP3-expressing cells. The enhancement of viral mRNA translation by NSP3 was also observed in a rabbit reticulocyte lysate translation system supplemented with recombinant NSP3. The use of NSP3 mutants indicates that its RNA- and eIF4G-binding domains are both required to enhance the translation of viral mRNA. The results reported here show that NSP3 forms a link between viral mRNA and the cellular translation machinery and hence is a functional analogue of cellular poly(A)-binding protein.


PLoS ONE ◽  
2013 ◽  
Vol 8 (7) ◽  
pp. e68665 ◽  
Author(s):  
Ming-Chih Lai ◽  
Shainn-Wei Wang ◽  
Lie Cheng ◽  
Woan-Yuh Tarn ◽  
Shaw-Jenq Tsai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document