mrna transport
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 24)

H-INDEX

45
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Dennis Quentin ◽  
Jan Schuhmacher ◽  
Bjoern Udo Klink ◽  
Janelle Lauer ◽  
Tanvir Shaikh ◽  
...  

Long-range mRNA transport is crucial for the spatio-temporal regulation of gene expression, and its malfunction is linked to neurological disorders. The pentameric FERRY Rab5 effector complex is the molecular link between mRNA and the early endosome in mRNA intracellular distribution. Here, we determine the cryo-EM structure of the human FERRY complex, composed of Fy-1 to Fy-5. The structure reveals a clamp-like architecture, in which two arm-like appendages, each consisting of Fy-2 and a Fy-5 dimer, protrude from the central Fy-4 dimer. We demonstrate that the coiled-coil domains of Fy-2 are flexible and project into opposite directions from the FERRY complex core. While the C-terminal coiled-coil acts as binding region for Fy-1/3 and Rab5, both coiled-coils together with Fy-5 bind mRNA. Thus, Fy-2 serves as binding hub that connects not only all five complex subunits, but also mediates the binding to mRNA and to the early endosome via Rab5. The FERRY structure provides novel mechanistic insight into long-distance mRNA transport.


2021 ◽  
Author(s):  
Lyudmila Dimitrova-Paternoga ◽  
Pravin Kumar Ankush Jagtap ◽  
Anna Cyrklaff ◽  
Vaishali ◽  
Karine Lapouge ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Elsa C. Rodrigues ◽  
Julia Grawenhoff ◽  
Sebastian J. Baumann ◽  
Nicola Lorenzon ◽  
Sebastian P. Maurer

Hundreds of messenger RNAs (mRNAs) are transported into neurites to provide templates for the assembly of local protein networks. These networks enable a neuron to configure different cellular domains for specialized functions. According to current evidence, mRNAs are mostly transported in rather small packages of one to three copies, rarely containing different transcripts. This opens up fascinating logistic problems: how are hundreds of different mRNA cargoes sorted into distinct packages and how are they coupled to and released from motor proteins to produce the observed mRNA distributions? Are all mRNAs transported by the same transport machinery, or are there different adaptors or motors for different transcripts or classes of mRNAs? A variety of often indirect evidence exists for the involvement of proteins in mRNA localization, but relatively little is known about the essential activities required for the actual transport process. Here, we summarize the different types of available evidence for interactions that connect mammalian mRNAs to motor proteins to highlight at which point further research is needed to uncover critical missing links. We further argue that a combination of discovery approaches reporting direct interactions, in vitro reconstitution, and fast perturbations in cells is an ideal future strategy to unravel essential interactions and specific functions of proteins in mRNA transport processes.


Author(s):  
Sulagna Das ◽  
Maria Vera ◽  
Valentina Gandin ◽  
Robert H. Singer ◽  
Evelina Tutucci
Keyword(s):  

Author(s):  
Sulagna Das ◽  
Maria Vera ◽  
Valentina Gandin ◽  
Robert H. Singer ◽  
Evelina Tutucci
Keyword(s):  

Author(s):  
Lindsey Madsen Meservey ◽  
Ved V. Topkar ◽  
Meng-meng Fu

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eugene Kozlov ◽  
Yulii V. Shidlovskii ◽  
Rudolf Gilmutdinov ◽  
Paul Schedl ◽  
Mariya Zhukova

AbstractPosttranscriptional gene regulation includes mRNA transport, localization, translation, and regulation of mRNA stability. CPEB (cytoplasmic polyadenylation element binding) family proteins bind to specific sites within the 3′-untranslated region and mediate poly- and deadenylation of transcripts, activating or repressing protein synthesis. As part of ribonucleoprotein complexes, the CPEB proteins participate in mRNA transport and localization to different sub-cellular compartments. The CPEB proteins are evolutionarily conserved and have similar functions in vertebrates and invertebrates. In the nervous system, the CPEB proteins are involved in cell division, neural development, learning, and memory. Here we consider the functional features of these proteins in the nervous system of phylogenetically distant organisms: Drosophila, a well-studied model, and mammals. Disruption of the CPEB proteins functioning is associated with various pathologies, such as autism spectrum disorder and brain cancer. At the same time, CPEB gene regulation can provide for a recovery of the brain function in patients with fragile X syndrome and Huntington's disease, making the CPEB genes promising targets for gene therapy.


Author(s):  
Reem Abouward ◽  
Giampietro Schiavo

AbstractMessenger RNA (mRNA) localisation enables a high degree of spatiotemporal control on protein synthesis, which contributes to establishing the asymmetric protein distribution required to set up and maintain cellular polarity. As such, a tight control of mRNA localisation is essential for many biological processes during development and in adulthood, such as body axes determination in Drosophila melanogaster and synaptic plasticity in neurons. The mechanisms controlling how mRNAs are localised, including diffusion and entrapment, local degradation and directed active transport, are largely conserved across evolution and have been under investigation for decades in different biological models. In this review, we will discuss the standing of the field regarding directional mRNA transport in light of the recent discovery that RNA can hitchhike on cytoplasmic organelles, such as endolysosomes, and the impact of these transport modalities on our understanding of neuronal function during development, adulthood and in neurodegeneration.


Sign in / Sign up

Export Citation Format

Share Document