So similar, yet so different: Selective translation of capped and polyadenylated viral mRNAs in the influenza virus infected cell

2011 ◽  
Vol 156 (1-2) ◽  
pp. 1-12 ◽  
Author(s):  
Emilio Yángüez ◽  
Amelia Nieto
1986 ◽  
Vol 6 (5) ◽  
pp. 1741-1750
Author(s):  
M G Katze ◽  
B M Detjen ◽  
B Safer ◽  
R M Krug

Selective translation of influenza viral mRNAs occurs after influenza virus superinfection of cells infected with the VAI RNA-negative adenovirus mutant dl331 (M. G. Katze, Y.-T. Chen, and R. M. Krug, Cell 37:483-490, 1984). Cell extracts from these doubly infected cells catalyze the initiation of essentially only influenza viral protein synthesis, reproducing the in vivo situation. This selective translation is correlated with a 5- to 10-fold suppression of the dl331-induced kinase that phosphorylates the alpha subunit of eucaryotic initiation factor eIF-2. This strongly suggests that influenza virus encodes a gene product that, analogous to the adenoviral VAI RNA, prevents the shutdown of overall protein synthesis caused by an eIF-2 alpha kinase turned on by viral infection. Adenoviral mRNA translation was restored to the extract from the doubly infected cells by the addition of the guanine nucleotide exchange factor eIF-2B, which is responsible for the normal recycling of eIF-2 during protein synthesis. This indicates that the residual kinase in the doubly infected cells leads to a limitation in functional (nonsequestered) eIF-2B and hence functional (GTP-containing) eIF-2 and that under these conditions influenza viral mRNAs are selectively translated over adenoviral mRNAs. Addition of double-stranded RNA to the extracts from these cells restored the eIF-2 alpha kinase to a level approaching that seen in extracts from cells infected with dl331 alone and caused the inhibition of influenza viral mRNA translation. This suggests that the putative influenza viral gene product acts against the double-stranded RNA activation of the kinase and indicates that influenza viral mRNA translation is also linked to the level of functional eIF-2. Our results thus indicate that a limitation in functional eIF-2 which causes a nonspecific reduction in the rate of initiation of protein synthesis results in the preferential translation of the better mRNAs (influenza viral mRNAs) at the expense of the poorer mRNAs (adenoviral mRNAs).


2002 ◽  
Vol 76 (20) ◽  
pp. 10417-10426 ◽  
Author(s):  
John C. Kash ◽  
Dawn M. Cunningham ◽  
Maria W. Smit ◽  
Youngwoo Park ◽  
David Fritz ◽  
...  

ABSTRACT To understand the regulation of cap-dependent translation initiation mediated by specific 5′ untranslated region (UTR) RNA-protein interactions in mammalian cells, we have studied the selective translation of influenza virus mRNAs. Previous work has shown that the host cell mRNA binding protein guanine-rich sequence factor 1 (GRSF-1) bound specifically to conserved viral 5′ UTR sequences and stimulated translation of viral 5′ UTR-driven mRNAs in vitro. In the present study, we have characterized the functional domains of GRSF-1 and mapped the RNA binding activity of GRSF-1 to RRM 2 (amino acids 194 to 275) with amino-terminal deletion glutathione S-transferase (GST)-GRSF-1 proteins. When these mutants were assayed for functional activity in vitro, deletion of an Ala-rich region (Δ[2-94]) appeared to diminish translational stimulation, while deletion of the Ala-rich region in addition to RRM 1 (Δ[2-194]) resulted in a 4-fold increase in translational activation over wild-type GRSF-1 (an overall 20-fold increase in activity). We have also mapped the GRSF-1 RNA binding site on influenza virus NP and NS1 5′ UTRs, which was determined to be the sequence AGGGU. With polysome fractionation and cDNA microarray analysis, we have identified cellular and viral mRNAs containing putative GRSF-1 binding sites that were transcriptionally up-regulated and selectively recruited to polyribosomes following influenza virus infection. Taken together, these studies demonstrate that RRM 2 is critical for GRSF-1 RNA binding and translational activity. Further, our data suggest GRSF-1 functions by selectively recruiting cellular and viral mRNAs containing 5′ UTR GRSF-1 binding sites to polyribosomes, which is mediated through interactions with cellular proteins.


1986 ◽  
Vol 6 (5) ◽  
pp. 1741-1750 ◽  
Author(s):  
M G Katze ◽  
B M Detjen ◽  
B Safer ◽  
R M Krug

Selective translation of influenza viral mRNAs occurs after influenza virus superinfection of cells infected with the VAI RNA-negative adenovirus mutant dl331 (M. G. Katze, Y.-T. Chen, and R. M. Krug, Cell 37:483-490, 1984). Cell extracts from these doubly infected cells catalyze the initiation of essentially only influenza viral protein synthesis, reproducing the in vivo situation. This selective translation is correlated with a 5- to 10-fold suppression of the dl331-induced kinase that phosphorylates the alpha subunit of eucaryotic initiation factor eIF-2. This strongly suggests that influenza virus encodes a gene product that, analogous to the adenoviral VAI RNA, prevents the shutdown of overall protein synthesis caused by an eIF-2 alpha kinase turned on by viral infection. Adenoviral mRNA translation was restored to the extract from the doubly infected cells by the addition of the guanine nucleotide exchange factor eIF-2B, which is responsible for the normal recycling of eIF-2 during protein synthesis. This indicates that the residual kinase in the doubly infected cells leads to a limitation in functional (nonsequestered) eIF-2B and hence functional (GTP-containing) eIF-2 and that under these conditions influenza viral mRNAs are selectively translated over adenoviral mRNAs. Addition of double-stranded RNA to the extracts from these cells restored the eIF-2 alpha kinase to a level approaching that seen in extracts from cells infected with dl331 alone and caused the inhibition of influenza viral mRNA translation. This suggests that the putative influenza viral gene product acts against the double-stranded RNA activation of the kinase and indicates that influenza viral mRNA translation is also linked to the level of functional eIF-2. Our results thus indicate that a limitation in functional eIF-2 which causes a nonspecific reduction in the rate of initiation of protein synthesis results in the preferential translation of the better mRNAs (influenza viral mRNAs) at the expense of the poorer mRNAs (adenoviral mRNAs).


2017 ◽  
Vol 16 (12) ◽  
pp. 2724-2734 ◽  
Author(s):  
Lu Dai ◽  
Aiping Bai ◽  
Charles D. Smith ◽  
Paulo C. Rodriguez ◽  
Fangyou Yu ◽  
...  

2003 ◽  
Vol 84 (12) ◽  
pp. 3263-3274 ◽  
Author(s):  
Idoia Burgui ◽  
Tomás Aragón ◽  
Juan Ortín ◽  
Amelia Nieto

It has previously been shown that influenza virus NS1 protein enhances the translation of viral but not cellular mRNAs. This enhancement occurs by increasing the rate of translation initiation and requires the 5′UTR sequence, common to all viral mRNAs. In agreement with these findings, we show here that viral mRNAs, but not cellular mRNAs, are associated with NS1 during virus infection. We have previously reported that NS1 interacts with the translation initiation factor eIF4GI, next to its poly(A)-binding protein 1 (PABP1)-interacting domain and that NS1 and eIF4GI are associated in influenza virus-infected cells. Here we show that NS1, although capable of binding poly(A), does not compete with PABP1 for association with eIF4GI and, furthermore, that NS1 and PABP1 interact both in vivo and in vitro in an RNA-independent manner. The interaction maps between residues 365 and 535 in PABP1 and between residues 1 and 81 in NS1. These mapping studies, together with those previously reported for NS1–eIF4GI and PABP1–eIF4GI interactions, imply that the binding of all three proteins would be compatible. Collectively, these and previously published data suggest that NS1 interactions with eIF4GI and PABP1, as well as with viral mRNAs, could promote the specific recruitment of 43S complexes to the viral mRNAs.


Sign in / Sign up

Export Citation Format

Share Document