Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects

2015 ◽  
Vol 45 ◽  
pp. 306-313 ◽  
Author(s):  
Pratima Meshram ◽  
B.D. Pandey ◽  
T.R. Mankhand
2022 ◽  
Vol 5 (1) ◽  
pp. 100
Author(s):  
Lourdes Yurramendi ◽  
Jokin Hidalgo ◽  
Amal Siriwardana

The feasibility of using low-environmental-impact leaching media to recover valuable metals from lithium ion batteries (LIBs) has been evaluated. Several deep eutectic solvents (DES) were tested as leaching agents in the presence of different type of additives (i.e., H2O2). The optimization of Co recovery was carried out by investigating various operating conditions, such as reaction time, temperature, solid (black mass) to liquid (DES) ratio, additive type, and concentration. Leaching with final selected DES choline chloride (33%), lactic acid (53%), and citric acid (13%) at 55 °C achieved an extraction yield of more than 95% for the cobalt. The leaching mechanism likely begins with the dissolution of the active material in the black mass (BM) followed by chelation of Co(II) with the DES. The results obtained confirm that those leaching media are an eco-friendly alternative to the strong inorganic acids used nowadays.


2021 ◽  
Author(s):  
Jialiang Zhang ◽  
Guoqiang Liang ◽  
Cheng Yang ◽  
Juntao Hu ◽  
Yongqiang Chen ◽  
...  

Inspired by the process of "metallurgy first and then beneficiation" for disposing low-grade and complex mineral resources, we proposed a breakthrough method to recover valuable metals from spent entire lithium-ion...


2021 ◽  
Vol 9 (5) ◽  
pp. 2271-2279
Author(s):  
Ping Xu ◽  
Chunwei Liu ◽  
Xihua Zhang ◽  
Xiaohong Zheng ◽  
Weiguang Lv ◽  
...  

2021 ◽  
Vol 259 ◽  
pp. 118212
Author(s):  
Dongxing Wang ◽  
Wei Li ◽  
Shuai Rao ◽  
Jinzhang Tao ◽  
Lijuan Duan ◽  
...  

2021 ◽  
Vol 1036 ◽  
pp. 35-44
Author(s):  
Ling Fang Ruan ◽  
Jia Wei Wang ◽  
Shao Ming Ying

Silicon-based anode materials have been widely discussed by researchers because of its high theoretical capacity, abundant resources and low working voltage platform,which has been considered to be the most promising anode materials for lithium-ion batteries. However,there are some problems existing in the silicon-based anode materials greatly limit its wide application: during the process of charge/discharge, the materials are prone to about 300% volume expansion, which will resultin huge stress-strain and crushing or collapse on the anods; in the process of lithium removal, there is some reaction between active material and current collector, which creat an increase in the thickness of the solid phase electrolytic layer(SEI film); during charging and discharging, with the increase of cycle times, cracks will appear on the surface of silicon-based anode materials, which will cause the batteries life to decline. In order to solve these problems, firstly, we summarize the design of porous structure of nanometer sized silicon-based materials and focus on the construction of three-dimensional structural silicon-based materials, which using natural biomass, nanoporous carbon and metal organic framework as structural template. The three-dimensional structure not only increases the channel of lithium-ion intercalation and the rate of ion intercalation, but also makes the structure more stable than one-dimensional or two-dimensional. Secondly, the Si/C composite, SiOx composite and alloying treatment can improve the volume expansion effection, increase the rate of lithium-ion deblocking and optimize the electrochemical performance of the material. The composite materials are usually coated with elastic conductive materials on the surface to reduce the stress, increase the conductivity and improve the electrochemical performance. Finally, the future research direction of silicon-based anode materials is prospected.


2021 ◽  
pp. 105809
Author(s):  
Wang Haoyi ◽  
Li Zefu ◽  
Meng Qi ◽  
Duan Jianguo ◽  
Xu Mingli ◽  
...  

2016 ◽  
Vol 724 ◽  
pp. 87-91 ◽  
Author(s):  
Chang Su Kim ◽  
Yong Hoon Cho ◽  
Kyoung Soo Park ◽  
Soon Ki Jeong ◽  
Yang Soo Kim

We investigated the electrochemical properties of carbon-coated niobium dioxide (NbO2) as a negative electrode material for lithium-ion batteries. Carbon-coated NbO2 powders were synthesized by ball-milling using carbon nanotubes as the carbon source. The carbon-coated NbO2 samples were of smaller particle size compared to the pristine NbO2 samples. The carbon layers were coated non-uniformly on the NbO2 surface. The X-ray diffraction patterns confirmed that the inter-layer distances increased after carbon coating by ball-milling. This lead to decreased charge-transfer resistance, confirmed by electrochemical impedance spectroscopy, allowing electrons and lithium-ions to quickly transfer between the active material and electrolyte. Electrochemical performance, including capacity and initial coulombic efficiency, was therefore improved by carbon coating by ball-milling.


2018 ◽  
Vol 775 ◽  
pp. 419-426 ◽  
Author(s):  
Wei Sheng Chen ◽  
Hsing Jung Ho

The paper concerns an approach about using environmental technology and hydrometallurgical process to the recovery of valuable metal from waste cathode material produced during the manufacture of lithium-ion batteries. It is noteworthy that the content of nickel, manganese and cobalt from cathode material are in the extraordinary large proportion. In the acid leaching step, the essential effects of H2SO4 concentration, H2O2 concentration, leaching time, liquid-solid mass ratio and reaction temperature with the leaching percentage were investigated. The cathode material was leached with 2M H2SO4 and 10 vol.% H2O2 at 70 °C and 300 rpm using a liquid-solid mass ratio of 30 ml/g and the leaching efficiency of cobalt was 98.5%, lithium was 99.8%, nickel was 98.6% and manganese was 98.6% under optimum conditions. Kinetic study demonstrates the activation energies for those analyzed metals with Arrhenius equation and manifests the data with hybrid reaction control mechanism. The process was proved from activation energies ranged from 27.79 to 47.25 kJ/mol. Finally, the valuable metals will be leached in sulfuric acid effectively.


Sign in / Sign up

Export Citation Format

Share Document