valuable metal
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 21)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander Chernyaev ◽  
Benjamin P. Wilson ◽  
Mari Lundström

AbstractThe role of aluminum concentration and pH in the purification of waste Li-ion battery leach solution was investigated using NaOH and LiOH as neutralization agents ([H2SO4] = 0.313 M, t = 6 h). Solution was prepared from synthetic chemicals to mimic real battery leach solution. Results demonstrate that pH (3.5–5.5) has a significant effect on the precipitation of metals (Fe, Al, Ni, Cu, Co, Mn, and Li), whereas higher temperature (T = 30 and 60 °C) decreases the precipitation pH of metals. Iron and aluminum were both found to precipitate at ca. pH 4 and the presence of aluminum in PLS clearly decreased the separation efficiency of Fe vs. active material metals (Ni, Co, Li). In the absence of dissolved aluminum, Fe precipitated already at pH 3.5 and did not result in the co-precipitation of other metals. Additionally, the Al-free slurry had a superior filtration performance. However, aluminum concentrations of 2 and 4 g/L were found to cause loss of Ni (2–10%), Co (1–2%) and Li (2–10%) to the Fe-Al hydroxide cake at pH 4. The use of LiOH (vs. NaOH) resulted in 50% lower co-precipitation of Ni, Co and Li. Overall, these results demonstrate that hydroxide precipitation can be an effective method to remove iron from battery waste leach solutions at aluminum concentrations of < 2 g/L only. Although the highest level of lithium loss in the cake was found at pH 4, the loss was shown to decrease with increasing pH.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1595
Author(s):  
Lukas Höber ◽  
Roberto Lerche ◽  
Stefan Steinlechner

In the course of developing an innovative process for CO2-optimised valuable metal recovery from precipitation residues accumulating in the zinc industry or nickel industry, the chlorination reactions were investigated. As the basis of small-scale pyrometallurgical experiments, the selected reaction systems were evaluated by means of thermodynamic calculations. With the help of the thermochemical computation software FactSage (Version 8.0), it is possible to simulate the potential valuable metal recovery from residual materials such as jarosite and goethite. In the course of the described investigations, an algorithmically supported simulation scheme was developed by means of Python 3 programming language. The algorithm determines the optimal process parameters for the chlorination of valuable metals, whereby up to 10,000 scenarios can be processed per iteration. This considers the mutual influences and secondary conditions that are neglected in individual calculations.


2021 ◽  
pp. 128319
Author(s):  
Xiaojian Liao ◽  
Maoyou Ye ◽  
Shoupeng Li ◽  
Jialin Liang ◽  
Siyu Zhou ◽  
...  

2021 ◽  
pp. 116703
Author(s):  
Aminul Islam ◽  
Srimonta Roy ◽  
Masud Ali Khan ◽  
Pronoy Mondal ◽  
Siow Hwa Teo ◽  
...  

2021 ◽  
Vol 59 (5) ◽  
pp. 295-303
Author(s):  
Jae-Heon Jung ◽  
So-Yeong Lee ◽  
Joo Choi ◽  
Ho-Sang Sohn

Blast furnace sludge, which comes from the iron making process, contains many valuable materials including iron, carbon, and zinc, etc. Because a cohesive agent is added during filtration, fine sludge particles are agglomerated together. Therefore, This makes it necessary to disperse the sludge in solution before separating or recovering valuable materials. In this study, the effects of solid/liquid (g/L) ratio, ultrasonic dispersion conditions, the pH of solvent, and the concentration of dispersant on the dispersion of sludge were investigated by measuring the interfacial properties (zeta potential and hydrodynamic size) of sludge particles. High absolute value of zeta potential and small hydrodynamic size suggests that the sludge particles in the solution presents good dispersion. The absolute value of zeta potential increased gradually at high solid/liquid ratio and ultrasonic dispersion intensity. But when the sludge in solution was dispersed for more than 30 minutes, the absolute value of the zeta potential decreased due to increasing contact and interaction between the particles. Optimal dispersion operations were conducted and when the pH of the solution was adjusted to 11, the zeta potential value was measured to be -44.8 mV. This means that the sludge formed the most stable dispersed phase. The lowest zeta potential was measured to be -46.4 mV with the addition of sodium hexametaphosphate (NaPO3)6 in the solution. It is thought that the sodium hexametaphosphate reduced ionic strength by removing alkali metal ions from the solution of sludge.


Sign in / Sign up

Export Citation Format

Share Document