scholarly journals A Sustainable Process for the Recovery of Valuable Metals from Spent Lithium Ion Batteries by Deep Eutectic Solvents Leaching

2022 ◽  
Vol 5 (1) ◽  
pp. 100
Author(s):  
Lourdes Yurramendi ◽  
Jokin Hidalgo ◽  
Amal Siriwardana

The feasibility of using low-environmental-impact leaching media to recover valuable metals from lithium ion batteries (LIBs) has been evaluated. Several deep eutectic solvents (DES) were tested as leaching agents in the presence of different type of additives (i.e., H2O2). The optimization of Co recovery was carried out by investigating various operating conditions, such as reaction time, temperature, solid (black mass) to liquid (DES) ratio, additive type, and concentration. Leaching with final selected DES choline chloride (33%), lactic acid (53%), and citric acid (13%) at 55 °C achieved an extraction yield of more than 95% for the cobalt. The leaching mechanism likely begins with the dissolution of the active material in the black mass (BM) followed by chelation of Co(II) with the DES. The results obtained confirm that those leaching media are an eco-friendly alternative to the strong inorganic acids used nowadays.

2018 ◽  
Vol 323 ◽  
pp. 44-48 ◽  
Author(s):  
Luca Millia ◽  
Valentina Dall'Asta ◽  
Chiara Ferrara ◽  
Vittorio Berbenni ◽  
Eliana Quartarone ◽  
...  

Author(s):  
Lizhen Duan ◽  
Yaru Cui ◽  
Qian Li ◽  
Juan Wang ◽  
Chonghao Man ◽  
...  

The cathodes of spent ternary lithium-ion batteries (LIBs) are rich in non-ferrous metals, such as lithium (Li), nickel (Ni), cobalt (Co)and manganese (Mn), which are important strategic raw materials and also potential sources of environmental pollution. How to extract these valuable metals cleanly and efficiently from spent cathodes is of great significance for sustainable development of LIBs industry. In the light of low energy consumption, green and high recovery efficiency, this paper provides an overview on different recovery technologies to recycle valuable metals in cathode materials of spent ternary LIBs. And the development trend and application prospects on recovery strategies for cathode materials in spent ternary LIBs are simply predicted also. It is proved that the high economic recovery system of “alkaline solution dissolution/calcination pre-treatment → H2SO4 leaching → H2O2 reduction → co-precipitation regeneration NCM” will be the dominant stream for recycling retired NCM batteries soon. Furthermore, the emerging advanced technologies, such as deep eutectic solvents (DESs) extraction and one–step direct regeneration/recovery of NCM cathode materials are preferred methods to substitute conventional regeneration system in the future.


2019 ◽  
Vol 21 (41) ◽  
pp. 22740-22755 ◽  
Author(s):  
Mei-Chin Pang ◽  
Yucang Hao ◽  
Monica Marinescu ◽  
Huizhi Wang ◽  
Mu Chen ◽  
...  

Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries.


2021 ◽  
Author(s):  
Jialiang Zhang ◽  
Guoqiang Liang ◽  
Cheng Yang ◽  
Juntao Hu ◽  
Yongqiang Chen ◽  
...  

Inspired by the process of "metallurgy first and then beneficiation" for disposing low-grade and complex mineral resources, we proposed a breakthrough method to recover valuable metals from spent entire lithium-ion...


2021 ◽  
Vol 9 (5) ◽  
pp. 2271-2279
Author(s):  
Ping Xu ◽  
Chunwei Liu ◽  
Xihua Zhang ◽  
Xiaohong Zheng ◽  
Weiguang Lv ◽  
...  

2021 ◽  
Vol 259 ◽  
pp. 118212
Author(s):  
Dongxing Wang ◽  
Wei Li ◽  
Shuai Rao ◽  
Jinzhang Tao ◽  
Lijuan Duan ◽  
...  

2021 ◽  
Vol 1036 ◽  
pp. 35-44
Author(s):  
Ling Fang Ruan ◽  
Jia Wei Wang ◽  
Shao Ming Ying

Silicon-based anode materials have been widely discussed by researchers because of its high theoretical capacity, abundant resources and low working voltage platform,which has been considered to be the most promising anode materials for lithium-ion batteries. However,there are some problems existing in the silicon-based anode materials greatly limit its wide application: during the process of charge/discharge, the materials are prone to about 300% volume expansion, which will resultin huge stress-strain and crushing or collapse on the anods; in the process of lithium removal, there is some reaction between active material and current collector, which creat an increase in the thickness of the solid phase electrolytic layer(SEI film); during charging and discharging, with the increase of cycle times, cracks will appear on the surface of silicon-based anode materials, which will cause the batteries life to decline. In order to solve these problems, firstly, we summarize the design of porous structure of nanometer sized silicon-based materials and focus on the construction of three-dimensional structural silicon-based materials, which using natural biomass, nanoporous carbon and metal organic framework as structural template. The three-dimensional structure not only increases the channel of lithium-ion intercalation and the rate of ion intercalation, but also makes the structure more stable than one-dimensional or two-dimensional. Secondly, the Si/C composite, SiOx composite and alloying treatment can improve the volume expansion effection, increase the rate of lithium-ion deblocking and optimize the electrochemical performance of the material. The composite materials are usually coated with elastic conductive materials on the surface to reduce the stress, increase the conductivity and improve the electrochemical performance. Finally, the future research direction of silicon-based anode materials is prospected.


2021 ◽  
pp. 105809
Author(s):  
Wang Haoyi ◽  
Li Zefu ◽  
Meng Qi ◽  
Duan Jianguo ◽  
Xu Mingli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document