Fate and Removal of Silver Nanoparticles during Sludge Conditioning and their Impact on Soil Health after Simulated Land Application

2021 ◽  
pp. 117757
Author(s):  
Zainab Abdulsada ◽  
Richard Kibbee ◽  
Dina Schwertfeger ◽  
Juliska Princz ◽  
Maria DeRosa ◽  
...  
2020 ◽  
Vol 100 (3) ◽  
pp. 189-197 ◽  
Author(s):  
Mónica González Linares ◽  
Yu Jia ◽  
Geoffrey I. Sunahara ◽  
Joann K. Whalen

Silver nanoparticles (AgNPs), a component of many consumer products, are considered an environmental risk due to the broad-spectrum toxicity of Ag+ to non-target organisms. Most AgNPs released from consumer products will end up as biosolids in wastewater treatment plants, which are often applied as a fertilizer to agriculture. Land application of biosolids may add AgNPs to the soil–plant system, with unknown consequences. This study investigated the growth of Hordeum vulgare seedlings, Ag bioconcentration and distribution in shoot and root tissues of barley exposed to biosolid-amended Delacour and Organization for Economic Co-operation and Development (OECD) soils spiked with AgNPs (up to 366 mg Ag kg−1 dry soil). In both soils, root and shoot growth declined linearly as the concentration of AgNPs increased. Barley had higher Ag bioconcentration values when grown in the OECD soil than in the Delacour soil. Silver bioavailability was greater in the OECD soil due to its physicochemical properties, such as low calcium concentration and acidic pH, relative to the Delacour soil. Barley seedlings exhibited morphological changes, including smaller shoots and shorter, thick roots after 14 d exposure to AgNPs. We conclude that plant structural responses, particularly changes in root biomass, could be an early diagnostic of seedling exposure to AgNPs in biosolid-amended soils.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1339
Author(s):  
Cassidy M. Buchanan ◽  
James A. Ippolito

Overgrazed rangelands can lead to soil degradation, yet long-term land application of organic amendments (i.e., biosolids) may play a pivotal role in improving degraded rangelands in terms of soil health. However, the long-term effects on soil health properties in response to single or repeated, low to excessive biosolids applications, on semi-arid, overgrazed grasslands have not been quantified. Using the Soil Management Assessment Framework (SMAF), soil physical, biological, chemical, nutrient, and overall soil health indices between biosolids applications (0, 2.5, 5, 10, 21, or 30 Mg ha−1) and application time (single: 1991, repeated: 2002) were determined. Results showed no significant changes in soil physical and nutrient health indices. However, the chemical soil health index was greater when biosolids were applied at rates <30 Mg ha−1 and within the single compared to repeated applications. The biological soil health index was positively affected by increasing biosolids application rates, was overall greater in the repeated as compared to the single application, and was maximized at 30 Mg ha−1. The overall soil health index was maximized at rates <30 Mg ha−1. When all indices were combined, and considering past plant community findings at this site, overall soil health appeared optimized at a biosolids application rate of ~10 Mg ha−1. The use of soil health tools can help determine a targeted organic amendment application rate to overgrazed rangelands so the material provides maximum benefits to soils, plants, animals, and the environment.


Author(s):  
James A. Ippolito ◽  
Thomas F. Ducey ◽  
Kandis Diaz ◽  
Ken A. Barbarick
Keyword(s):  

2019 ◽  
Vol 107 (3) ◽  
pp. 305
Author(s):  
Mengmei Geng ◽  
Yuting Long ◽  
Tongqing Liu ◽  
Zijuan Du ◽  
Hong Li ◽  
...  

Surface-enhanced Raman Scattering (SERS) fiber probe provides abundant interaction area between light and materials, permits detection within limited space and is especially useful for remote or in situ detection. A silver decorated SERS fiber optic probe was prepared by hydrothermal method. This method manages to accomplish the growth of silver nanoparticles and its adherence on fiber optic tip within one step, simplifying the synthetic procedure. The effects of reaction time on phase composition, surface plasmon resonance property and morphology were investigated by X-ray diffraction analysis (XRD), ultraviolet-visible absorption spectrum (UV-VIS absorption spectrum) and scanning electron microscope (SEM). The results showed that when reaction time is prolonged from 4–8 hours at 180 °C, crystals size and size distribution of silver nanoparticles increase. Furthermore, the morphology, crystal size and distribution density of silver nanoparticles evolve along with reaction time. A growth mechanism based on two factors, equilibrium between nucleation and growth, and the existence of PVP, is hypothesized. The SERS fiber probe can detect rhodamin 6G (R6G) at the concentration of 10−6 M. This SERS fiber probe exhibits promising potential in organic dye and pesticide residue detection.


Author(s):  
S. Rezaei-Zarchi ◽  
M. Taghavi-Foumani ◽  
S. Razavi Sheshdeh ◽  
M. Negahdary ◽  
G. Rahimi

2019 ◽  
Vol 29 (3) ◽  
Author(s):  
Mai Ngọc Tuan Anh

Silver nanoplates (SNPs) having different size were synthesized by a seed-mediated method. The seeds -silver nanoparticles with 4 – 6 nm diameters were synthesized first by reducing silver nitrate with sodium borohydride in the present of Trisodium Citrate and Hydrogen peroxide. Then these seeds were developed by continue reducing Ag\(^+\) ions with various amount of L-Ascorbic acid to form SNPs. Our analysis showed that the concentratrion of L-Ascorbic acid, a secondary reducing agent, played an important role to form SNPs. In addition, the size and in-plane dipole plasmon resonance wavelenght of silver nanoplates were increased when the concentration of added silver nitrate increased. The characterization of SNPs were studied by UV-Vis, FE-SEM, EDS and TEM methods.


Sign in / Sign up

Export Citation Format

Share Document