A fluorescence indicator for source discrimination between microplastic-derived dissolved organic matter and aquatic natural organic matter

2021 ◽  
pp. 117833
Author(s):  
Yun Kyung Lee ◽  
Seongjin Hong ◽  
Jin Hur
2013 ◽  
Vol 14 (4) ◽  
pp. 399-406

The main objective of this study was to characterize the organic matter present in raw water and along the treatment process, as well as its seasonal variation. A natural organic matter fractionation approach has been applied to Lever water treatment plant located in Douro River, in Oporto (Portugal). The process used was based on the sorption of dissolved organic matter in different types of ion exchange resins, DAX-8, DAX-4 and IRA-958, allowing its separation into four fractions: very hydrophobic acids (VHA), slightly hydrophobic acids (SHA), charged hydrophilic (CHA) and hydrophilic neutral (NEU). The dissolved organic carbon (DOC) determination was used to quantify dissolved organic matter. Samples were collected monthly, during approximately one year, from raw water captured at the surface and under the bed of the river, and after each step of the treatment: pre-filtration in sand/anthracite filters, ozonation, coagulation/flocculation, counter current dissolved air flotation and filtration (CoCoDAFF) and chlorination. The NEU fraction showed a seasonal variation, with maximum values in autumn for the sampling points corresponding to raw water captured at the surface and under the bed of the river. It was usually the predominating fraction and did not show a significant decrease throughout the treatment. Nevertheless their low concentration, the same occurred for the CHA and VHA fractions. There was an overall decrease in the SHA fraction throughout the water treatment (especially after CoCoDAFF and ozonation) as well as in the DOC. The TSUVA254 values obtained for raw water generally varied between 2.0 and 4.0 L mgC-1 m-1 and between 0.75 and 1.78 L mgC-1 m-1 for treated water. It was observed a decrease of TSUVA values along the treatment, especially after ozonation. These results may contribute to a further optimization in the process of treating water for human consumption.


Author(s):  
R. K. Padhi

surface water dissolved organic matter feature substantial portion of terrestrial origin and serve as important precursor for toxic disinfection byproduct formation.In the present study, organic matter extracted from the composite...


2004 ◽  
Vol 49 (4) ◽  
pp. 57-62 ◽  
Author(s):  
K. Kosaka ◽  
H. Yamada ◽  
H. Tsuno ◽  
Y. Shimizu ◽  
S. Matsui

The effects of the dissolved organic matter (DOM) on the ozone decay and the di-n-butyl phthalate (DBP) decomposition during ozone/hydrogen peroxide (O3/H2O2) process were investigated (DBP-d4 was used instead of DBP). Four surface waters, two secondary municipal sewage effluents (SMSEfs) and Suwannee river natural organic matter were used as DOM. The ozone decompositions in the DOM solutions were separated by instantaneous ozone consumption and slower ozone decay. The effect of H2O2 addition on the ozone decay was clearly observed at slower ozone decay. Ozone decomposition rate at slower ozone decay increased linearly with H2O2 dose. DBP-d4 was exponentially decreased with ozone consumption. Ozone consumption required to decompose 90% of DBP-d4 ((ΔO3)90%) in SMSEFs was higher than those in surface waters. The (ΔO3)90% per DOC of DOM values were from 22 to 23 μmole/mgC for SMSEFs and from 10 to 17 μmole/mgC for surface waters. The (ΔO3)90% values were correlated to specific ultraviolet absorbance at 254 nm (SUVA254) for surface waters.


2010 ◽  
Vol 59 (1) ◽  
pp. 99-108 ◽  
Author(s):  
M. Takács ◽  
Gy. Füleky

The Hot Water Percolation (HWP) technique for preparing soil extracts has several advantages: it is easily carried out, fast, and several parameters can be measured from the same solution. The object of this study was to examine the possible use of HWP extracts for the characterization of soil organic matter. The HPLC-SEC chromatograms, UV-VIS and fluorescence properties of the HWP extracts were studied and the results were compared with those of the International Humic Substances Society (IHSS) Soil Humic Acid (HA), IHSS Soil Fulvic Acid (FA) and IHSS Suwannee Natural Organic Matter (NOM) standards as well as their HA counterparts isolated by traditional extraction methods from the original soil samples. The DOM of the HWP solution is probably a mixture of organic materials, which have some characteristics similar to the Soil FA fractions and NOM. The HWP extracted organic material can be studied and characterized using simple techniques, like UV-VIS and fluorescence spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document