Finite element analysis of stress singularity in partial slip and gross sliding regimes in fretting wear

Wear ◽  
2014 ◽  
Vol 321 ◽  
pp. 53-63 ◽  
Author(s):  
Tongyan Yue ◽  
M. Abdel Wahab
2010 ◽  
Vol 132 (2) ◽  
Author(s):  
D. Nowell

This paper presents an efficient numerical method based on quadratic programming, which may be used to analyze fretting contacts in the presence of wear. The approach provides an alternative to a full finite element analysis, and is much less computationally expensive. Results are presented for wear of a Hertzian contact under full sliding and under partial slip. These are compared with previously published finite element analyses of the same problem. Results are also obtained for the fully worn problem by allowing a large number of wear cycles to accumulate. The predicted traction distributions for this case compare well with the fully worn analytical solution presented in part one of this paper.


Author(s):  
Pankaj Dhaka ◽  
Raghu V. Prakash

Abstract Understanding the effect of load sequence is important in the context of a blade-disc dovetail joint in an aero-engine and many other such applications where, the mating surfaces undergo fretting wear under variable slip amplitude loading conditions. In the present work, a two-dimensional finite element analysis is carried out for a cylinder-on-plate configuration. The cylinder is modeled as deformable whereas the plate is modelled as rigid. An incremental wear modelling algorithm is used to model the wear of cylindrical pad while the plate is assumed as un-worn. This simulates a practical scenario where, generally one of the mating surfaces is sufficiently hardened or an interfacial harder/sacrificial element is inserted to restrict the wear to only one of the surfaces. A Fortran-based ABAQUS® subroutine UMESHMOTION is used to simulate the wear profile for the cylinder. A constant extrapolation technique is used to simulate 18000 cycles of fretting. The finite element analysis results are validated with the analytical solutions and literature data. The fretting wear modelling is carried out for two different slip amplitudes viz., 25 μm and 150 μm, to simulate the low and high slip amplitude loading respectively. Two blocks of alternate low and high slip amplitudes are applied to understand the influence of load sequence. Important contact parameters viz., contact pressure, contact stresses and contact slip are extracted. A comparison is made between the low-high and high-low load sequence based on the contact tractions and worn out profiles.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 3890-3895 ◽  
Author(s):  
CHOON YEOL LEE ◽  
JOON WOO BAE ◽  
BYUNG SUN CHOI ◽  
YOUNG SUCK CHAI

The structural integrity of steam generators in nuclear power plants is very much dependent upon the fretting wear characteristics of Inconel 690 U-tubes. In this study, a finite element analysis was used to investigate fretting wear on the secondary side of the steam generator, which arises from flow-induced vibrations (FIV) between the U-tubes and supports or foreign objects. Two-dimensional and three-dimensional finite element analyses were adopted to investigate the fretting wear problems. The purpose of the two-dimensional analysis, which simulated the contact between a punch and a plate, was to demonstrate the validity of using finite element analysis to analyze fretting wear problems. This was achieved by controlling the value of the wear constant and the number of cycles. The two-dimensional solutions obtained from this study were in good agreement with previous results reported by Strömberg. In the three-dimensional finite element analysis, a quarterly symmetric model was used to simulate tubes contacting at right angles. The results of the analyses showed donut-shaped wear along the contacting boundary, which is a typical feature of fretting wear.


2005 ◽  
Vol 40 (2) ◽  
pp. 95-106 ◽  
Author(s):  
R Rajasekaran ◽  
D Nowell

The implication of selecting different contact algorithms in solving a contact problem by a submodelling approach is highlighted using the example of a partial slip Cattaneo-Mindlin problem. It is shown that, by employing a penalty formulation, the state of partial slip can be incorrectly predicted as full sliding whereas a Lagrange formulation predicts the correct slip-stick behaviour. The displacements along the centre-line of contact are calculated by analytical approach and compared with finite element results. It is found that the Lagrange multiplier approach predictions match the analytical results well, but prediction by the penalty formulation is sensitive to the slip tolerance selected. It is concluded that care should be exercised while using the penalty formulation for displacement-controlled problems.


Sign in / Sign up

Export Citation Format

Share Document