scholarly journals Erratum: “Elastic-Plastic Finite Element Analysis of Nonsteady State Partial Slip Wheel-Rail Rolling Contact” [Journal of Tribology, 2005, 127(4), pp. 713–721]

2006 ◽  
Vol 128 (2) ◽  
pp. 442-442
Author(s):  
Zefeng Wen ◽  
Xuesong Jin ◽  
Yanyao Jiang
2010 ◽  
Author(s):  
Rifky Ismail ◽  
Muhammad Tauviqirrahman ◽  
Jamari ◽  
Dirk J. Schipper ◽  
Khairurrijal ◽  
...  

2005 ◽  
Vol 127 (4) ◽  
pp. 713-721 ◽  
Author(s):  
Zefeng Wen ◽  
Xuesong Jin ◽  
Yanyao Jiang

A finite element analysis with the implementation of an advanced cyclic plasticity theory was conducted to study the elastic-plastic deformation under the nonsteady state rolling contact between a wheel and a rail. The consideration of nonsteady state rolling contact was restricted to a harmonic variation of the wheel-rail normal contact force. The normal contact pressure was idealized as the Hertzian distribution, and the tangential force presented by Carter was used. Detailed rolling contact stresses and strains were obtained for repeated rolling contact. The harmonic variation of the normal (vertical) contact force results in a wavy rolling contact surface profile. The results can help understand the influence of plastic deformation on the rail corrugation initiation and growth. The creepage or stick-slip condition greatly influences the residual stresses and strains. While the residual strains and surface displacements increased at a reduced rate with increasing rolling passes, the residual stresses stabilize after a limited number of rolling passes. The residual stresses and strains near the wave trough of the residual wavy deformation are higher than those near the wave crest.


2008 ◽  
Vol 575-578 ◽  
pp. 1461-1466
Author(s):  
Byeong Choon Goo ◽  
Jung Won Seo

Railcar wheels and axles belong to the most critical components in railway vehicles. The service conditions of railway vehicles have been more severe in recent years due to speed-up. Therefore, a more precise evaluation of railcar wheel life and safety has been requested. Wheel/rail contact fatigue and thermal cracks due to braking are two major mechanisms of the railcar wheel failure. One of the main sources influencing on the contact zone failure is residual stress. The residual stress in wheels formed during heat treatment in manufacturing changes in the process of braking. Thus the fatigue life of railcar wheels should be estimated by considering both thermal stress and rolling contact. Also, the effect of residual stress variation due to manufacturing process and braking process should be included in simulating contact fatigue behavior. In this paper, an evaluation procedure for the contact fatigue life of railcar wheels considering the effects of residual stresses due to heat treatment, braking and repeated contact load is proposed. And the cyclic stressstrain history for fatigue analysis is simulated by finite element analysis for the moving contact load.


2001 ◽  
Vol 36 (4) ◽  
pp. 373-390 ◽  
Author(s):  
S. J Hardy ◽  
M. K Pipelzadeh ◽  
A. R Gowhari-Anaraki

This paper discusses the behaviour of hollow tubes with axisymmetric internal projections subjected to combined axial and internal pressure loading. Predictions from an extensive elastic and elastic-plastic finite element analysis are presented for a typical geometry and a range of loading combinations, using a simplified bilinear elastic-perfectly plastic material model. The axial loading case, previously analysed, is extended to cover the additional effect of internal pressure. All the predicted stress and strain data are found to depend on the applied loading conditions. The results are normalized with respect to material properties and can therefore be applied to geometrically similar components made from other materials, which can be represented by the same material models.


2012 ◽  
Vol 468-471 ◽  
pp. 2517-2520 ◽  
Author(s):  
Xin Ying Xie ◽  
Xin Sheng Yin

In this paper ,it analyses the push-extend multi-under-reamed pile in use of elastic-plastic theory by the software ANSYS.It takes four push-extend multi-under-reamed piles which are the same except plates' distance.It introduces the realative theory to make the anlysis much more accuracy.The results which is taken by ANSYS are researched to find out the regularity and can certain the reasonable plate's distance to anlyze the bearing capacity of push-extend multi-under-reamed pile at the same time.


Sign in / Sign up

Export Citation Format

Share Document