Slurry erosion, sliding wear and corrosion behavior of martensitic stainless steel composites reinforced in-situ with NbC particles

Wear ◽  
2019 ◽  
Vol 420-421 ◽  
pp. 149-162 ◽  
Author(s):  
Wen Hao Kan ◽  
Gwénaëlle Proust ◽  
Vijay Bhatia ◽  
Li Chang ◽  
Kevin Dolman ◽  
...  
Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1811
Author(s):  
Yuntao Xi ◽  
Lin Wan ◽  
Jungang Hou ◽  
Zhiyong Wang ◽  
Lei Wang ◽  
...  

In this paper, a pragmatic technique has been developed to evaluate the erosion-corrosion behavior of three kinds of ZrN coatings (i.e., monolayer, multilayer, and gradient layers) which were deposited on AISI 420 martensitic stainless steel using an ion-assisted deposition technology. Among them, the monolayer coating refers to the coating with no change in composition and structure, the multilayer coating refers to the coating with alternating change of Zr/ZrN, and the gradient coating refers to the ZrN coating by increasing N2 partial pressure gradually. The morphology, composition, and microhardness of these ZrN coatings were examined by means of integrating the scanning electron microscopy (SEM), X-ray diffraction (XRD), and Knoop hardness measurements, while anodic polarization tests and salt fog spray tests in a simulated industrial environment have been performed to evaluate and identify the corrosion mechanisms of these coatings. The surface microhardness and corrosion resistance of the AISI420 martensitic stainless steel is found to be significantly improved by depositing the ion-assisted deposition ZrN coatings. The study indicates that the erosion-corrosion behavior in the slurry is the result of the synergistic effect of small-angle erosion and acid solution corrosion. Three ZrN coatings hinder the slurry erosion-corrosion behavior from two aspects (i.e., erosion resistance of small-angle particles as well as corrosion resistance of the substrate), thereby significantly improving the erosion-corrosion resistance of AISI 420 stainless steel. In addition, the ZrN gradient coatings show a much better erosion-corrosion resistance than that of the monolayer/multilayer ZrN coating because they have excellent crack resistance, bearing capacity, and electrochemical performance.


2021 ◽  
Vol 1016 ◽  
pp. 997-1002
Author(s):  
Hikaru Nagata ◽  
Masa Ono ◽  
Yasuyuki Miyazawa ◽  
Yuji Hayashi ◽  
Yoshio Bizen

To clarify the effect of the acid solution type on corrosion resistance, the corrosion behavior of stainless steel brazed joints in HCl aqueous solution was evaluated through electrochemical measurements. Anodic polarization curves of a ferritic stainless-steel base metal, Ni-based brazing filler metals, and a brazed joint were recorded. In addition, in situ observations were conducted to observe the corrosion behavior of each structure of the brazed joint. Corrosion potentials of the brazing filler metal were lower than that of the base metal. In situ observations of the brazed joint revealed the order of corrosion in aqueous hydrochloric acid. According to the electrochemical measurements, under an actual corrosive environment, the brazing filler metal can function as an anode and selectively corrode. In addition, the anodic polarization curve of the brazed joint showed values between those of the polarization curves of the brazing filler metal and the base metal, indicating that the corrosion resistance could be electrochemically evaluated in HCl aqueous solution.


CORROSION ◽  
10.5006/3516 ◽  
2020 ◽  
Vol 76 (12) ◽  
Author(s):  
Salar Salahi ◽  
Mostafa Kazemipour ◽  
Ali Nasiri

This study aims to understand the correlation between the manufacturing process-induced plastic deformation, microstructure, and corrosion behavior of a 13Cr martensitic stainless steel tubing material (UNS S42000). Comparisons were made between the microstructure, crystallographic orientation, and corrosion performance of a texture-free, heat-treated sample and uniaxially tensioned samples to the elongations of 5% and 22%. Cyclic potentiodynamic polarization tests and electrochemical impedance spectroscopy were performed on all samples in aerated 3.5 wt% NaCl electrolyte at room temperature. Overall, the corrosion resistance of the samples was found to decrease with increasing deformation level. A more stable and higher corrosion potential and pitting potential values with a better stability of the passive film were derived for the nondeformed sample, whereas the 5% and 22% elongated samples exhibited lower corrosion and pitting potential values and were characterized by having a less stable passive layer. All samples consistently revealed micropit formation on the lath boundaries where a high concentration of chromium carbide precipitates was detected. Increasing the level of plastic strain in 13Cr stainless steel was found to enlarge the size of sensitized regions along the matrix/coarse chromium carbide precipitates interface, leading to more regions susceptible to initiation and propagation of pitting.


Sign in / Sign up

Export Citation Format

Share Document