A new method for predicting the three-dimensional surface texture transfer in the skin pass rolling of metal strips

Wear ◽  
2019 ◽  
Vol 426-427 ◽  
pp. 1246-1264 ◽  
Author(s):  
Chuhan Wu ◽  
Liangchi Zhang ◽  
Peilei Qu ◽  
Shanqing Li ◽  
Zhenglian Jiang
Author(s):  
Chuhan Wu ◽  
Liangchi Zhang ◽  
Peilei Qu ◽  
Shanqing Li ◽  
Zhenglian Jiang ◽  
...  

Abstract This article investigates the surface texture transfer mechanisms in lubricated skin pass rolling of metal strips with three-dimensional rough surfaces of both regular patterns and random surface asperity distributions. Two important steps have been completed. The first is the successful establishment of an efficient numerical method for predicting the 3D texture transfer. It was identified that the new method can be used reliably with the key complex factors coupled in skin pass rolling, such as the effects of lubricant and surface roughness. The second is the exploration of the texture transfer mechanisms with the aid of this new method. In addition, the effects of hydrodynamic pressure on the texture transfer efficiency were comprehensively investigated by a dynamic explicit finite element analysis. It was found that lubrication plays a critical role in determining the surface texture transfer. The texture transfer ratio decreases with increasing the lubricant viscosity. A larger pressure coefficient brings about a lower texture transfer ratio, but a larger reduction ratio leads to a greater texture transfer.


2009 ◽  
Vol 236 (1) ◽  
pp. 52-59 ◽  
Author(s):  
C.R. SLYFIELD Jr. ◽  
K.E. NIEMEYER ◽  
E.V. TKACHENKO ◽  
R.E. TOMLINSON ◽  
G.G. STEYER ◽  
...  

2021 ◽  
Vol 198 ◽  
pp. 106358 ◽  
Author(s):  
Chuhan Wu ◽  
Liangchi Zhang ◽  
Peilei Qu ◽  
Shanqing Li ◽  
Zhenglian Jiang

2021 ◽  
Vol 10 (19) ◽  
pp. 4528
Author(s):  
Waseem Habashi ◽  
Amal Bader-Farraj ◽  
Nir Shpack ◽  
Ilan Beitlitum ◽  
Hila May ◽  
...  

Enamel erosion has become a common clinical finding that often impairs dental esthetics and function. In the current study, we aimed to implement the three-dimensional surface texture analysis (3DST) method to explore the protective effect of fluoride on surface texture prior to erosive conditions. For each of the 50 teeth used in this study, the polished buccal enamel surface was divided into three separate areas: the first area was untouched polished enamel, the two other surfaces were immersed in 0.3% citric acid for 30 s. One was treated with high-concentration (19,000 ppm) sodium fluoride (NaF) solution prior to acid attack, and the other had no treatment prior to acid exposure. Enamel surface texture and step height measurements were obtained using a high-resolution disk scanning confocal microscope, and SEM images were also acquired. Surfaces treated with fluoride showed fewer variations in 3-D surface texture parameters than the eroded surface compared to the control group (p = 0.001). This was in accordance with the SEM descriptive images. The findings indicate that pre-fluoridated enamel areas were less affected by the acid and showed similar features to the untouched enamel. Moreover, a protective effect of the fluoride treatment against irreversible enamel damage was noted as the surface loss (step-height) was significantly reduced (p = 0.03). The study showed that 3DST analysis is a valuable methodology for detecting and quantifying subtle differences between the surfaces. When exploring the combination of all surface texture parameters, it was revealed that the pre-fluoridated eroded enamel surfaces showed considerable similarity to the untouched enamel.


Wear ◽  
2021 ◽  
pp. 203764
Author(s):  
Chuhan Wu ◽  
Liangchi Zhang ◽  
Peilei Qu ◽  
Shanqing Li ◽  
Zhenglian Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document