Targeting the Subthalamic Nucleus for Deep Brain Stimulation—A Comparative Study Between Magnetic Resonance Images Alone and Fusion with Computed Tomographic Images

2011 ◽  
Vol 75 (1) ◽  
pp. 132-137 ◽  
Author(s):  
Shin-Yuan Chen ◽  
Sheng-Tzung Tsai ◽  
Hsiang-Yi Hung ◽  
Sheng-Huang Lin ◽  
Yan-Hong Pan ◽  
...  
2009 ◽  
Vol 64 (suppl_5) ◽  
pp. ons374-ons384 ◽  
Author(s):  
Slawomir Daniluk ◽  
Keith G. Davies ◽  
Peter Novak ◽  
Thai Vu ◽  
Jules M. Nazzaro ◽  
...  

Abstract OBJECTIVE Although a few studies have quantified errors in the implantation of deep brain stimulation electrodes into the subthalamic nucleus (STN), a significant trend in error direction has not been reported. We have previously found that an error in axial plane, which is of most concern because it cannot be compensated for during deep brain stimulation programming, had a posteromedial trend. We hypothesized that this trend results from a predominance of a directionally oriented error factor of brain origin. Accordingly, elimination of nonbrain (technical) error factors could augment this trend. Thus, implantation accuracy could be improved by anterolateral compensation during target planning. METHODS Surgical technique was revised to minimize technical error factors. During 22 implantations, targets were selected on axial magnetic resonance imaging scans up to 1.5 mm anterolateral from the STN center. Using fusion of postoperative computed tomographic and preoperative magnetic resonance imaging scans, implantation errors in the axial plane were obtained and compared with distances from the lead to the STN to evaluate the benefit of anterolateral compensation. RESULTS Twenty errors and the mean error had a posteromedial direction. The average distances from the lead to the target and to the STN were 1.7 mm (range, 0.8–3.1 mm) and 1.1 mm (range, 0.1–1.9 mm), respectively. The difference between the 2 distances was significant (paired t test, P < 0.0001). The lower parts of the lead were consistently bent in the posteromedial direction on postoperative scout computed tomographic scans, suggesting that a brain-related factor is responsible for the reported error. CONCLUSION Elimination of the technical factors of error during STN deep brain stimulation implantation can result in a consistent posteromedial error. Implantation accuracy may be improved by compensation for this error in advance.


2021 ◽  
Vol 11 (11) ◽  
pp. 4999
Author(s):  
Chung-Yoh Kim ◽  
Jin-Seo Park ◽  
Beom-Sun Chung

When performing deep brain stimulation (DBS) of the subthalamic nucleus, practitioners should interpret the magnetic resonance images (MRI) correctly so they can place the DBS electrode accurately at the target without damaging the other structures. The aim of this study is to provide a real color volume model of a cadaver head that would help medical students and practitioners to better understand the sectional anatomy of DBS surgery. Sectioned images of a cadaver head were reconstructed into a real color volume model with a voxel size of 0.5 mm × 0.5 mm × 0.5 mm. According to preoperative MRIs and postoperative computed tomographys (CT) of 31 patients, a virtual DBS electrode was rendered on the volume model of a cadaver. The volume model was sectioned at the classical and oblique planes to produce real color images. In addition, segmented images of a cadaver head were formed into volume models. On the classical and oblique planes, the anatomical structures around the course of the DBS electrode were identified. The entry point, waypoint, target point, and nearby structures where the DBS electrode could be misplaced were also elucidated. The oblique planes could be understood concretely by comparing the volume model of the sectioned images with that of the segmented images. The real color and high resolution of the volume model enabled observations of minute structures even on the oblique planes. The volume models can be downloaded by users to be correlated with other patients’ data for grasping the anatomical orientation.


2006 ◽  
Vol 58 (suppl_1) ◽  
pp. ONS-96-ONS-102 ◽  
Author(s):  
Ramin Amirnovin ◽  
Ziv M. Williams ◽  
G. Rees Cosgrove ◽  
Emad N. Eskandar

Abstract OBJECTIVE: Subthalamic deep brain stimulation (DBS) has rapidly become the standard surgical therapy for medically refractory Parkinson disease. However, in spite of its wide acceptance, there is considerable variability in the technical approach. This study details our technique and experience in performing microelectrode recording (MER) guided subthalamic nucleus (STN) DBS in the treatment of Parkinson disease. METHODS: Forty patients underwent surgery for the implantation of 70 STN DBS electrodes. Stereotactic localization was performed using a combination of magnetic resonance and computed tomographic imaging. We used an array of three microelectrodes, separated by 2 mm, for physiological localization of the STN. The final location was selected based on MER and macrostimulation through the DBS electrode. RESULTS: The trajectory selected for the DBS electrode had an average pass through the STN of 5.6 ± 0.4 mm on the left and 5.7 ± 0.4 mm on the right. The predicted location was used in 42% of the cases but was modified by MER in the remaining 58%. Patients were typically discharged on the second postoperative day. Eighty-five percent of patients were sent home, 13% required short-term rehabilitation, and one patient required long-term nursing services. Seven complications occurred over 4 years. Four patients suffered small hemorrhages, one patient experienced a lead migration, one developed an infection of the pulse generator, and one patient suffered from a superficial cranial infection. CONCLUSION: Simultaneous bilateral MER-guided subthalamic DBS is a relatively safe and well-tolerated procedure. MER plays an important role in optimal localization of the DBS electrodes.


2017 ◽  
Vol 15 (1) ◽  
pp. 66-71 ◽  
Author(s):  
Andreas Nowacki ◽  
Ines Debove ◽  
Michael Fiechter ◽  
Frédéric Rossi ◽  
Markus Florian Oertel ◽  
...  

Abstract BACKGROUND Targeting accuracy in deep brain stimulation (DBS) surgery can be defined as the level of accordance between selected and anatomic real target reflected by characteristic electrophysiological results of microelectrode recording (MER). OBJECTIVE To determine the correspondence between the preoperative predicted target based on modern 3-T magnetic resonance imaging (MRI) and intraoperative MER results separately on the initial and consecutive second side of surgery. METHODS Retrospective cohort study of 86 trajectories of DBS electrodes implanted into the subthalamic nucleus (STN) of patients with Parkinson's disease. The entrance point of the electrode into the STN and the length of the electrode trajectory crossing the STN were determined by intraoperative MER findings and 3 T T2-weighted magnetic resonance images with 1-mm slice thickness. RESULTS Average difference between MRI- and MER-based trajectory lengths crossing the STN was 0.28 ± 1.02 mm (95% CI: −0.51 to −0.05 mm). There was a statistically significant difference between the MRI- and MER-based entry points on the initial and second side of surgery (P = .04). Forty-three percent of the patients had a difference of more than ±1 mm of the MRI-based-predicted and the MER-based-determined entry points into the STN with values ranging from −3.0 to + 4.5 mm. CONCLUSION STN MRI-based targeting is accurate in the majority of cases on the first and second side of surgery. In 43% of implanted electrodes, we found a relevant deviation of more than 1 mm, supporting the concept of MER as an important tool to guide and optimize targeting and electrode placement.


2021 ◽  
Vol 32 ◽  
pp. 102829
Author(s):  
Bethany R. Isaacs ◽  
Margot Heijmans ◽  
Mark L. Kuijf ◽  
Pieter L. Kubben ◽  
Linda Ackermans ◽  
...  

2017 ◽  
Vol 14 (6) ◽  
pp. 661-667
Author(s):  
Sunjay S Dodani ◽  
Charles W Lu ◽  
J Wayne Aldridge ◽  
Kelvin L Chou ◽  
Parag G Patil

Abstract BACKGROUND Accurate electrode placement is critical to the success of deep brain stimulation (DBS) surgery. Suboptimal targeting may arise from poor initial target localization, frame-based targeting error, or intraoperative brain shift. These uncertainties can make DBS surgery challenging. OBJECTIVE To develop a computerized system to guide subthalamic nucleus (STN) DBS electrode localization and to estimate the trajectory of intraoperative microelectrode recording (MER) on magnetic resonance (MR) images algorithmically during DBS surgery. METHODS Our method is based upon the relationship between the high-frequency band (HFB; 500-2000 Hz) signal from MER and voxel intensity on MR images. The HFB profile along an MER trajectory recorded during surgery is compared to voxel intensity profiles along many potential trajectories in the region of the surgically planned trajectory. From these comparisons of HFB recordings and potential trajectories, an estimate of the MER trajectory is calculated. This calculated trajectory is then compared to actual trajectory, as estimated by postoperative high-resolution computed tomography. RESULTS We compared 20 planned, calculated, and actual trajectories in 13 patients who underwent STN DBS surgery. Targeting errors for our calculated trajectories (2.33 mm ± 0.2 mm) were significantly less than errors for surgically planned trajectories (2.83 mm ± 0.2 mm; P = .01), improving targeting prediction in 70% of individual cases (14/20). Moreover, in 4 of 4 initial MER trajectories that missed the STN, our method correctly indicated the required direction of targeting adjustment for the DBS lead to intersect the STN. CONCLUSION A computer-based algorithm simultaneously utilizing MER and MR information potentially eases electrode localization during STN DBS surgery.


Sign in / Sign up

Export Citation Format

Share Document