fusion images
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 48)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Ias Sri Wahyuni ◽  
Rachid Sabre

In this article, we give a new method of multi-focus fusion images based on Dempster-Shafer theory using local variability (DST-LV). Indeed, the method takes into account the variability of observations of neighbouring pixels at the point studied. At each pixel, the method exploits the quadratic distance between the value of the pixel I (x, y) of the point studied and the value of all pixels which belong to its neighbourhood. Local variability is used to determine the mass function. In this work, two classes of Dempster-Shafer theory are considered: the fuzzy part and the focused part. We show that our method gives the significant and better result by comparing it to other methods.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2262
Author(s):  
Shenglin Li ◽  
Jinglei Wang ◽  
Dacheng Li ◽  
Zhongxin Ran ◽  
Bo Yang

High-spatiotemporal-resolution land surface temperature (LST) is a crucial parameter in various environmental monitoring. However, due to the limitation of sensor trade-off between the spatial and temporal resolutions, such data are still unavailable. Therefore, the generation and verification of such data are of great value. The spatiotemporal fusion algorithm, which can be used to improve the spatiotemporal resolution, is widely used in Landsat and MODIS data to generate Landsat-like images, but there is less exploration of combining long-time series MODIS LST and Landsat 8 LST product to generate Landsat 8-like LST. The purpose of this study is to evaluate the accuracy of the long-time series Landsat 8 LST product and the Landsat 8-like LST generated by spatiotemporal fusion. In this study, based on the Landsat 8 LST product and MODIS LST product, Landsat 8-like LST is generated using Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Enhanced STARFM (ESTARFM), and the Flexible Spatiotemporal DAta Fusion (FSDAF) algorithm, and tested and verified in the research area located in Gansu Province, China. In this process, Landsat 8 LST product was verified based on ground measurements, and the fusion results were comprehensively evaluated based on ground measurements and actual Landsat 8 LST images. Ground measurements verification indicated that Landsat 8 LST product was highly consistent with ground measurements. The Root Mean Square Error (RMSE) was 2.862 K, and the coefficient of determination R2 was 0.952 at All stations. Good fusion results can be obtained for the three spatiotemporal algorithms, and the ground measurements verified at All stations show that R2 was more significant than 0.911. ESTARFM had the best fusion result (R2 = 0.915, RMSE = 3.661 K), which was better than STARFM (R2 = 0.911, RMSE = 3.746 K) and FSDAF (R2 = 0.912, RMSE = 3.786 K). Based on the actual Landsat 8 LST images verification, the fusion images were highly consistent with actual Landsat 8 LST images. The average RMSE of fusion images about STARFM, ESTARFM, and FSDAF were 2.608 K, 2.245 K, and 2.565 K, respectively, and ESTARFM is better than STARFM and FSDAF in most cases. Combining the above verification, the fusion results of the three algorithms were reliable and ESTARFM had the highest fusion accuracy.


Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2337
Author(s):  
Sho Kohyama ◽  
Yasumasa Nishiura ◽  
Yuki Hara ◽  
Takeshi Ogawa ◽  
Akira Ikumi ◽  
...  

We used our novel three-dimensional magnetic resonance imaging-computed tomography fusion images (3D MRI-CT fusion images; MCFIs) for detailed preoperative lesion evaluation and surgical simulation in osteochondritis dissecans (OCD) of the elbow. Herein, we introduce our procedure and report the findings of the assessment of its utility. We enrolled 16 men (mean age: 14.0 years) and performed preoperative MRI using 7 kg axial traction with a 3-Tesla imager and CT. Three-dimensional-MRI models of the humerus and articular cartilage and a 3D-CT model of the humerus were constructed. We created MCFIs using both models. We validated the findings obtained from the MCFIs and intraoperative findings using the following items: articular cartilage fissures and defects, articular surface deformities, vertical and horizontal lesion diameters, the International Cartilage Repair Society (ICRS) classification, and surgical procedures. The MCFIs accurately reproduced the lesions and correctly matched the ICRS classification in 93.5% of cases. Surgery was performed as simulated in all cases. Preoperatively measured lesion diameters exhibited no significant differences compared to the intraoperative measurements. MCFIs were useful in the evaluation of OCD lesions and detailed preoperative surgical simulation through accurate reproduction of 3D structural details of the lesions.


2021 ◽  
Author(s):  
Muhammad Ayub Ansari ◽  
Andrew Crampton ◽  
Rebecca Garrard ◽  
Biao Cai ◽  
Moataz Attallah

Abstract This study focuses on the detection of seeded porosity during metal additive manufacturing by employing convolutional neural networks (CNN). The aim of the study is to demonstrate the application of Machine Learning (ML) in in-process monitoring. Laser Powder Bed Fusion (LPBF) is a selective laser melting technique used to build complex 3D parts. The current monitoring system in LPBF is inadequate to produce safety-critical parts due to the lack of automated processing of collected data. To assess the efficacy of applying ML to defect detection in LPBF by in-process images, a range of synthetic defects have been designed into cylindrical artefacts to mimic porosity occurring in different locations, shapes, and sizes. Empirical analysis has revealed insights into the importance of accurate labelling strategies required for data-driven solutions. Two labelling strategies based on the computer aided design (CAD) file and X-ray computed tomography (XCT) scan data was formulated. A novel CNN was trained from scratch and optimised by selecting the best values of an extensive range of hyper-parameters by employing Hyperband tuner. The accuracy of the model was 90% when trained using a CAD-assisted labelling, and 97% when using XCT-assisted labelling. The model successfully spotted pores as small as 0.2mm. Experiments revealed that balancing the data set improved the model's precision from 89% to 97% and recall from 85% to 97% when compared to training on an imbalanced data set. We strongly believed that the proposed model would significantly reduce post-processing cost and provide a better base model network for transfer learning of future ML models aimed at LPBF micro-defects detection.


2021 ◽  
Vol 18 (21) ◽  
pp. 38
Author(s):  
Adhwa Amir Tan ◽  
Helmi Zulhaidi Mohd Shafri ◽  
Nur Shafira Nisa Shaharum

Sentinel-2A remote sensing satellite system was recently launched, providing free global remote sensing data similar to Landsat systems. Although the mission enables the acquisition of 10 m spatial resolution global data, the assessment of Sentinel-2A data performance for mapping in Malaysia is still limited. This study aimed to investigate and assess the capability of Sentinel-2A imagery in mapping urban areas in Malaysia by comparing its performance against the established Landsat-8 data as well as the fusion datasets from combining Landsat-8 and Sentinel-2A datasets and using Wavelet transform (WT), Brovey transform (BT) and principal component analysis. Pixel-based and object-based image analysis (OBIA) classification approaches combined with support vector machine (SVM) and decision tree (DT) algorithms were utilized in this assessment, and the accuracy generated was analysed. The Sentinel-2A data provided superior urban mapping output over the use of Landsat-8 alone, and the fusion datasets do not yield advantages for single-scene urban mapping. The highest overall accuracy (OA) for pixel-based classification of Sentinel-2A images is 84.77 % by SVM, followed by 65.27 % using DT. BT produced the highest OA for the fusion images of 78.40 % with SVM and 52.21 % with DT. For the object-based classification of Sentinel-2A images, the highest OA is 71.33 % by SVM, followed by 76.38 % using DT. Similarly, the highest OA of fusion images is obtained by BT of 50.35 % with SVM, followed by 65.66 % with DT. From the analysis, the use of SVM pixel-based classification for medium spatial resolution Sentinel-2A data is effective for urban mapping in Malaysia and useful for future long-term mapping applications. HIGHLIGHTS An accurate mapping of urban land is still challenging and requires high image quality of spectral and spatial aspects to identify features Single and fusion image analysis conducted in order to investigate and assess the most performing interpretation result by grouping out the features classes Statistical performance and image classification comparison is relevant to prove the most effective result among the images GRAPHICAL ABSTRACT


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6826
Author(s):  
Baohua Yang ◽  
Yue Zhu ◽  
Shuaijun Zhou

The extraction of wheat lodging is of great significance to post-disaster agricultural production management, disaster assessment and insurance subsidies. At present, the recognition of lodging wheat in the actual complex field environment still has low accuracy and poor real-time performance. To overcome this gap, first, four-channel fusion images, including RGB and DSM (digital surface model), as well as RGB and ExG (excess green), were constructed based on the RGB image acquired from unmanned aerial vehicle (UAV). Second, a Mobile U-Net model that combined a lightweight neural network with a depthwise separable convolution and U-Net model was proposed. Finally, three data sets (RGB, RGB + DSM and RGB + ExG) were used to train, verify, test and evaluate the proposed model. The results of the experiment showed that the overall accuracy of lodging recognition based on RGB + DSM reached 88.99%, which is 11.8% higher than that of original RGB and 6.2% higher than that of RGB + ExG. In addition, our proposed model was superior to typical deep learning frameworks in terms of model parameters, processing speed and segmentation accuracy. The optimized Mobile U-Net model reached 9.49 million parameters, which was 27.3% and 33.3% faster than the FCN and U-Net models, respectively. Furthermore, for RGB + DSM wheat lodging extraction, the overall accuracy of Mobile U-Net was improved by 24.3% and 15.3% compared with FCN and U-Net, respectively. Therefore, the Mobile U-Net model using RGB + DSM could extract wheat lodging with higher accuracy, fewer parameters and stronger robustness.


2021 ◽  
Vol 13 (19) ◽  
pp. 3952
Author(s):  
Changjiang Liu ◽  
Pan Duan ◽  
Fei Zhang ◽  
Chi-Yung Jim ◽  
Mou Leong Tan ◽  
...  

High-frequency monitoring of suspended particulate matter (SPM) concentration can improve water resource management. Missing high-resolution satellite images could hamper remote-sensing SPM monitoring. This study resolved the problem by applying spatiotemporal fusion technology to obtain high spatial resolution and dense time-series data to fill image-data gaps. Three data sources (MODIS, Landsat 8, and Sentinel 2) and two spatiotemporal fusion methods (the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) and the flexible spatiotemporal data fusion (FSDAF)) were used to reconstruct missing satellite images. We compared their fusion accuracy and verified the consistency of fusion images between data sources. For the fusion images, we used random forest (RF) and XGBoost as inversion methods and set “fusion first” and “inversion first” strategies to test the method’s feasibility in Ebinur Lake, Xinjiang, arid northwestern China. Our results showed that (1) the blue, green, red, and NIR bands of ESTARFM fusion image were better than FSDAF, with a good consistency (R2 ≥ 0.54) between the fused Landsat 8, Sentinel 2 images, and their original images; (2) the original image and fusion image offered RF inversion effect better than XGBoost. The inversion accuracy based on Landsat 8 and Sentinel 2 were R2 0.67 and 0.73, respectively. The correlation of SPM distribution maps of the two data sources attained a good consistency of R2 0.51; (3) in retrieving SPM from fused images, the “fusion first” strategy had better accuracy. The optimal combination was ESTARFM (Landsat 8)_RF and ESTARFM (Sentinel 2)_RF, consistent with original SPM maps (R2 = 0.38, 0.41, respectively). Overall, the spatiotemporal fusion model provided effective SPM monitoring under the image-absence scenario, with good consistency in the inversion of SPM. The findings provided the research basis for long-term and high-frequency remote-sensing SPM monitoring and high-precision smart water resource management.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6044
Author(s):  
Ning Zhang ◽  
Shaohua Jin ◽  
Gang Bian ◽  
Yang Cui ◽  
Liang Chi

Due to the complex marine environment, side-scan sonar signals are unstable, resulting in random non-rigid distortion in side-scan sonar strip images. To reduce the influence of resolution difference of common areas on strip image mosaicking, we proposed a mosaic method for side-scan sonar strip images based on curvelet transform and resolution constraints. First, image registration was carried out to eliminate dislocation and distortion of the strip images. Then, the resolution vector of the common area in two strip images were calculated, and a resolution model was created. Curvelet transform was then performed for the images, the resolution fusion rules were used for Coarse layer coefficients, and the maximum coefficient integration was applied to the Detail layer and Fine layer to calculate the fusion coefficients. Last, inverse Curvelet transform was carried out on the fusion coefficients to obtain images in the fusion area. The fusion images in multiple areas were then combined in the registered images to obtain the final image. The experiment results showed that the proposed method had better mosaicking performance than some conventional fusion algorithms.


Sign in / Sign up

Export Citation Format

Share Document