scholarly journals Genetically Engineered Mouse Model of Brainstem High-Grade Glioma

2020 ◽  
Vol 1 (3) ◽  
pp. 100165
Author(s):  
Fernando M. Nunez ◽  
Jessica C. Gauss ◽  
Flor M. Mendez ◽  
Santiago Haase ◽  
Pedro R. Lowenstein ◽  
...  
2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii300-iii300
Author(s):  
Chen Shen ◽  
David Picketts ◽  
Oren Becher

Abstract Diffuse Intrinsic Potine Glioma (DIPG) is a rare pediatric brain tumor for which no cure or efficacious therapies exist. Previous discoveries have revealed that, DIPG harbors distinct genetic alterations, when compared with adult high-grade glioma (HGG) or even with non-DIPG pediatric HGGs. ATRX alteration is found in 9% of clinical cases of DIPG, and significantly overlaps with H3.3K27M mutation and p53 loss, the two most common genetic changes in DIPG, found in 80% and 77% clinical cases, respectively. Here we developed genetically engineered mouse model of brainstem glioma using the RCAS-Tv-a system by targeting PDGF-B overexpression, p53 loss, H3.3K27M mutation and ATRX loss-of function to Nestin-expression brainstem progenitor cells of the neonatal mouse. Specifically, we used Nestin-Tv-a; p53 floxed; ATRX heterozygous female and Nestin-Tv-a; p53 floxed; ATRX floxed male breeders, generated offsprings with ATRX loss of function (n=18), ATRX heterozygous females (n=6), and ATRX WT (n=10). Median survial of the three groups are 65 days, 88 days and 51 days, respectively. Also, ATRX null mice is lower in tumor incidence (44.4%), compared with ATRX WT (80%). We evaluated the pathological features of DIPG with or without ATRX alteration, RNA-seq is performed to identify differentially expressed genes between ATRX WT and loss-of-function. In conclution, this study generated the first genetically modified mouse model studying ATRX loss-of-function in DIPG, and suggested that ATRX loss-of-function in DIPG may slow down tumorigenesis and decrease tumor incidence.


PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0140253 ◽  
Author(s):  
Jamie D. Weyandt ◽  
Benjamin L. Lampson ◽  
Sherry Tang ◽  
Matthew Mastrodomenico ◽  
Diana M. Cardona ◽  
...  

2004 ◽  
Vol 25 ◽  
pp. S242 ◽  
Author(s):  
Adam J. Simon ◽  
Lin Chen ◽  
Eric A. Price ◽  
Min Xu ◽  
Adam Lucka ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0122387 ◽  
Author(s):  
Benjamin H. Beck ◽  
Hyunggoon Kim ◽  
Rebecca O’Brien ◽  
Martin R. Jadus ◽  
G. Yancey Gillespie ◽  
...  

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi121-vi121
Author(s):  
Daniel Zamler ◽  
Er-Yen Yen ◽  
Takashi Shingu ◽  
Jiangong Ren ◽  
Cynthia Kassab ◽  
...  

Abstract The introduction of immunotherapies has been paradigm shifting for cancers that were previously a death sentence. However, preclinical/clinical studies on glioblastoma (GBM) have generated mixed outcomes in patients, likely due to its great heterogeneity of immune microenvironment, particularly the myeloid cell populations. Primary patient studies have been limited by a difficulty in performing longitudinal studies, uncontrolled environmental conditions, and genetic variability. There is also, unfortunately, a paucity of mouse models that effectively re-capitulate the immune microenvironment of the human disease. To address these difficulties, we have established the Qk/p53/Pten (QPP) triple knockout mouse model established in our lab. The QPP model uses a cre-lox system to induce Qk deletion on a Pten−/−; p53−/− background which helps NSCs maintain their stemness outside the SVZ in Nes-CreERT2;QkiL/L PtenL/L p53L/L mice, which develops glioblastoma with survival of ~105 days. We have preliminarily assessed the QPP tumors as a faithful model to study the immune response to GBM and found them to recapitulate human GBM with respect to differential response to checkpoint blockade therapy and myeloid and T-cells histopathologically, particularly regarding upregulation of Arginase-1 (Arg1). Arg1 is the canonical marker for tumor-associated macrophages (TAMs), which is a major population of myeloid cells that greatly infiltrate in human GBM, sometimes making up more than ~30% of all GBM cells. Given TAMs’ prevalence in the tumor microenvironment and their upregulation of Arg1 in both human GBM and our QPP model, we are testing whether manipulation of Arg1 will impact TAM function and influence GBM growth. We are also evaluating arginine metabolism in TAMs effect on T cell function in GBM. Lastly, we have developed a genetically engineered mouse model to study the role of Arg1 knockout in a GBM context in-vivo. Our studies suggest that Arg1 plays an important role in GBM immune interaction.


Sign in / Sign up

Export Citation Format

Share Document